Detailed solution given below
Q.1
1) 2) 3) 4) ans: 1 Q.2
1) 2) 3) 4) ans: 4 Q.3
1) 2) 3) 4) ans: 4
Q.4
1) 2) 3) 4) ans:4 Q.5
1) 2) 3) 4) ans:2 Q.6
1) 2) 3) 4) ans:1
Q.7
1) 2) 3) 4) ans:1 Q.8
1) 2) 3) 4) ans:4
Q.9
1) 2) 3) 4) ans:2 NOTE:- actual ans is 0.125m Q.10
1) 2) 3) 4) ans:3
Q.11
1) 2) 3) 4) ans:1 Q.12
1) 2) 3) 4) ans:2 (actual ans is 88.88%)
Q.13
1) 2) 3) 4) ans:3 Q.14
1) 2) 3) 4) ans:1
Q.15
1) 2) 3) 4) ans:3 Q.16
1) 2) 3) 4) ans:4
Q.17
1) 2) 3) 4) ans:4 Q.18
1) 2) 3) 4) ans:3
Q.19
1) 2) 3) 4) ans:2 Q.20
1) 2) 3) 4) ans:3
Q.21
1) 2) 3) 4) ans:4 Q.22
1) 2) 3) 4) ans:3 Q.23
1) 2) 3) 4) ans:2
Q.24
1) 2) 3) 4) ans:4 Q.25
1) 2) 3) 4) ans:4
Q.26
1) 2) 3) 4) ans:3 Q.27
1) 2) 3) 4) ans:2
Q.28
1) 2) 3) 4) ans:2 Q.29
1) 2) 3) 4) ans:3
Q.30
1) 2) 3) 4) ans:2
Q.61
1) 2) 3) 4) ANS:1 Q.62
1) 2) 3) 4) ANS:3
Q.63
1) 2) 3) 4) ANS: 4 Q.64
1) 2) 3) 4) ANS:2 Q.65
1) 2) 3) 4) ANS:4
Q.66
1) 2) 3) 4) ANS:2 Q.67
1) 2) 3) 4) ANS:4 Q.68
1) 2) 3) 4) ANS:3
Q.69
1) 2) 3) 4) ANS:1 Q.70 1) 2) 3) 4) ANS:3 Q.71
1) 2) 3) 4) ANS:2
Q.72
1) 2) 3) 4) ANS:2 Q.73
1) 2) 3) 4) ANS:4 Q.74
1) 2) 3) 4) ANS:1
Q.75
1) 2) 3) 4) ANS:1 Q.76
1) 2) 3) 4) ANS:2 Q.77
1) 2) 3) 4) ANS:1 Q.78 1) 2) 3) 4) ANS:4
Q.79
1) 2) 3) 4) ANS:3 Q.80
1) 2) 3) 4) ANS:2 Q.81
1) 2) 3) 4) ANS:4
Q.82
1) 2) 3) 4) ANS: * (ans is 4) Q.83
1) 2) 3) 4) ANS:3 Q.84
1) 2) 3) 4) ANS:4
Q.85
1) 2) 3) 4) ANS:1 Q.86
1) 2) 3) 4) ANS:1 Q.87
1) 2) 3) 4) ANS:4
Q.88
1) 2) 3) 4) ANS:3 Q.89
1) 2) 3) 4) ANS:4 Q.90
1) 2) 3) 4) ANS:2 By Saurav gupta Electronics & tele comm. Engg. (2nd year) Jadavpur university
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) Q.1 Bqv= mv²/R R= mv/Bq
Now, eV= ½ mv² or mv= √2emV
R= √2emV/Bq R∝ √m R’ = √2 R Ans -1
Q.2 q1+q2 = Q ---eq(1) given BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012)
σ1 =σ2--- given or q1/4πr²=q2/4πR² q1/r²= q2/R²-------- eq(2)
solving eq (1) & (2) we get q1 =Q/(1+r²/R²)
now, V = 1/4πϵ˳ (q1/r+q2/R) = 1/4πϵ˳ q1(1/r+ q1 R/r²) = Q/4πϵ˳ (r+R)/(R²+r²) Ans -4
Q.3 Sinα ≃ tanα ≃α BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) α= d/D Δx=λd/D
d α
=λ/α
D
Ans 4
Q.4 E= [E ͨ cosω ͨt +E ͫcos(ω ͨt) cos(ω ͫ t)]î =[E ͨ cosω ͨt +E ͫ/2 cos(ω ͨ+ ω ͫt) +E ͫ/2 cos(ω ͫ-ω ͨ t)]î Ans 4
Q.5 N M.S.D = (N+1) V.S.D 1 V.S.D = N/(N+1) M.S.D NOW, BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) L.C = 1M.S.D -1V.S.D =[1 – N/(N+1)]M.S.D a/(N+1) Ans 2
Q.6 Case1 Tension /unit length = 100g/l Case2 Tension /unit length= 2mg/l 2m=100 m=50kg Ans -1
Q.7 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) dq/dt ͨ = dq/dtˢ 9KA(100-θ)/(L/2) = KAθ/(L/2) θ=90⁰ Ans -1
Q.8 F = dP/dt =d/dt(mv) = v dm/dt =6 Ans 4
Q.9
s
τ = -mg sinθ R mgsinθ
≃-mgθR Iα=-mgθR BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
mg
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012)
α = -mgRθ/I ω²=mgR/I now, I = mR² + mR² =2mR² ω²=g/2R T = 2π√(2R)/g Putting T=1 & g≃π² R= 1/8 =0.125 Ans 2 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012)
Q.10 υn= (2n-1)v/4L case1 500 = (2n – 1)v/4 x16 ----(1) Case2 500 = (2n’-1)v/4 x 50-----(2) Solving 1 & 2 we get 50n -16n’ = 17 n≃1 n’≃2 now solving for v v = 500 x4 x 50/3 v = 33333.33m/s
now, BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) υ(fundamental ,outside water) = v/λ =v/2l ≃276 Hz υ'(2nd lowest) =2υ =552 Hz Ans -3
Q.11 λav= λα + λβ now, T ½ =1/λ Tav= 1/λα +1/λβ Ans -1
Q.12 Mu = mv + mv’ BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) ½ mu² = ½ mv² + ½ mv’² Solving eq (1) &(2) V = -1/3u V’= 2/3u (ΔE/E )x100= 88.88% Ans 2
Q.13 Sinθ ͨ > 1/μ μg/μw= 1.5/(4/3) = 9/8 Sinθ ͨ>8/9 Ans 3
Q.14 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) K .E= hυ-hυ˳ If υ is doubled K.E is more than doubled Also Photocurrent depends on intensity not on frequency Statement 1- false Statement 2-true Ans -1
Q.15 q(E + v x B)= 0 E=-vxB E=Bxv E = E˳ cos(wt -2π/λy)ẑ Ans -3 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012)
Q.16 I .E³= 13.6 z²/n² = 13.6 x 9 = 122.4 T.E = I.E¹ + I.E² + I.E³ =5.4 +75.6 +122.4 = 203.4 Ans 4
Q.17 P=V²/R R1
P2 Ans -4
BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012)
Q.18 H=I²Rt ΔH= 2ΔI + ΔR +Δt =6% Ans -3
Q.19 v² = u² + 2al V’² = u² + 2a(l/2) =u² + ½ (v²-u²) V’² = (v² + u²)/2 V’ = √(v²+u²)/2 Ans -2
Q.20 Statement 1 –true BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) Statement 2- true B near the centre is μ˳ni but decreses as we move towards it’s end and becomes μ˳ni/2 at the extreme end which explains statement 1 Ans -3
Q.21 V = e – iR 120 – 50 x 0.1 = 115 Ans 4
Q.22 Y = A sin(ωt + 2π/3) At t=0 Y = A sin 120⁰ Checking option BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) Ans -3
Q.23 Fsinθ
Fκ
Fcosθ mg
Fκ = μ(mg- Fsinθ) Now,
Fcosθ = Fκ F = μW/(cosθ + μsinθ)---(1)
For minimum force BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) dF/dθ = 0 solving we get tanθ = μ or cosθ= 1/√1+μ² or sinθ = μ/√1 +μ²
substituting these values in eq –1 F = μW/√1 +μ² Ans -2
Q.24 As we pull the connector by say x amount there will be growth in current in the circuit which will be opposed by the inductor(due to self inductance) BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) Here inductor is analogous to spring(mechanical analog of inductor) Opposing force ∝ -x Hence the connector will execute S.H.M Ans 4
Q.25 P =αv Vf= m Vᵢ W = ∫ p dv = α∫vdv = α/2 (vf²- vᵢ²) = αv² (m²-1)/2 Ans -4
Q.26 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) Ф = E.A cos 45⁰ = E πa²/√2 Ans -3
Q.27 L = constant Mvr = constant fMr = (1-f)Mv’r’ fr²ω = (1-f)r’²ω’ ω/ω’ = (1-f)/f x (r’/r)²---(1) now, mr = m’r’ fMr =(1-f)Mr’ r’/r = f/(1-f) putting this in eq ---(1) BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) ω/ω’ = f/(1-f) Ans -2
Q.28 ᶯ(max) = 1- T2/T1 = 1 – 273/373 = 26.80% Hence 30% efficiency is not possible by carnot’s theorem Ans 2
Q.29 Vol(initially) = vol(finally) n 4/3 πr³ = 4/3 π R³ n = R³/r³ BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE PHYSICS SOLUTION (EXAM-26TH MAY 2012) now,
1/2mv²=Δs = n 4πr²T - 4πR²T Solving we get V² = 8πTR²/m [R/r -1] Put m = ρ x 4/3 πR³ V = 6T/ρ[1/r -1/R]⁰·⁵ Ans- 3
Q.30 Self explanatory Ans -2
BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
Q.61 Lt x-> 2ˉ x/[x] ≤ limx-> 2ˉ f(x) ≤ lim x->2ˉ √6-x 2 ≤ limx->2ˉ f(x) ≤ 2 Limx->2ˉ f(x) = 2 Statement 1---true f(2)=1 ----given Limx->2ˉ f(x) ≠ f(2) Hence f(x) is not continuous at x=2 Statement 2- ----false Ans 1
Q.62 n(f) = ⁴C1 x 2 x 4 = 32 n(s) = 5! =120 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
p = 32/120 = 4/15 Ans 3
Q.63 g(x) = ax³/3 + bx² + cx g'(x) = ax² + bx + c now, g(1)=0, g(x)= 0 and g(x) is obviously continuous by rolle’s theorem at some point between (0,1) g’(x)=0 hence ax² +bx +c = 0 has it’s root between (0,1) BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
Ans 4
Q.64
b²+c²
ab
ac
ab
c²+a²
bc
ac
bc
a²+b²
-a² ab ac = ab -b² bc ac bc -c²
BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
-1 1 = a²b²c² 1 1
1
-1 1 1
-1 = 4a²b²c² Ans 2
Q.65 2secθ = sec(θ+ф) + sec(θ-ф)
Cosθ =
2cos(θ+ф)cos(θ-ф) cos(θ+ф) +cos(θ-ф)
= (cos²θ –sin²θ) / cosθcosф Cos²θ(cosф-1) = -sin²ф Cos²θ = 2 cos²ф K= ±√2 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
Ans 4
Q.66 M = L + (N/2 – c)x h/f 25 = 20 + (50-45) x 10/f F =10 Ans 2
Q.67 X² + sec²x -1 F(x) = ∫ F(x) =
dx
1+x² Sec²x (1+x²) -1 1+x²
∫Sec²x dx - ∫ dx/1+x² BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
dx
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
f(x)= tanx – tanˉ¹x + c f(0) = 0
C=0
f(1) = tan1 – tanˉ¹1 = tan1 – π/4 Ans 4
Q.68 d.r of normal to plane 1 ---(1,0,0) d.r of normal to plane 2 ---(2,-5a,3) d.r of normal to plane 3 ---(3b,1,-3) let d.r of common line (p,q,r) now, line is perpendicular to plane1 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
P=0-----(1)
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
line is perpendicular to plane 2
2p -5aq + 3r = 0----(2)
line is perpendicular to plane 3
3pb + q – 3r = 0----(3) Solving these eq we get a =1/5 Ans 3
Q.69 lim α-0
=
f(1-α) –f(1) α³ + 3α
f’(1-α) 3α² + 3
= f’(1)/3 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
= -53/3 Ans 1
Q.70 (x + 3/2)² + y² = (3/2)²---(1) Y = mx+1---(2) Solving eq (1) &(2) Y²(1 +m²) - y(3/m + 2/m²) +1/m²-3/m = 0 Since two points are equidistant from and opp sides of x-axis Sum of the roots of this eqᶯ must be 0 i.e 3/m + 2/m² = 0 3m + 2= 0 Ans 3 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
Q.71
W= -a+ib Z=a+ib
θ
π-θ
w = -a – ib -w =a +ib = z Statement 1—true Statement 2---false As |z|=|w| only implies that they are equidistant from centre of argand diagram BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
Ans 2
Q.72 Px² + qx + r = 0 αβ = r/p let α= a+ib then β=a-ib αβ = a² + b² |α| +|β| = √a²+b² + √a²+b² =2√a²+b² =2√r/p
Since r>p |α|+|β|>2 Ans 2 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
Q.73 (0,1) (a,2a)
(α,β) (Y-1)/x= (2a-1)/a Slope of this line m1= (2a-1/a) Slope of given line m2= 2 Since these lines are perpendicular m1 x m2= - 1 we get a = 2/5 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
Y=2x
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
now (a,2a) are middle points of (1,0) and (α,β) we get α = 4/5 β = 3/5 Ans 4
Q.74 ²C1 x ⁴C2 x 3! + ²C2 x ⁴C1 x 3! = 96 Ans 1
Q.75 n p(s) = 2³ n(s) = 3 no. of one one relation is ⁸P3 = 336 Ans 1 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
Q.76 Area= ∫ x dy =˳∫⁸ y¹ ³ dy = 12 Ans 2
Q.77 P q = ~p v q Basic formula Can check it by truth table Ans 1
Q.78 X² = 8y BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
(Y – 2)= -dx/dy|ˣ ⁴ (x-4) y-2 =4-x x +y = 6 Ans 4
Q.79 |a+b| = √ a²+b²+2abcosθ |c| = √ 9+25+2x3x5cosθ 30cosθ = 15 θ= 60⁰ Ans 3 Q.80 ˳∫⁰·⁹ [x -2[x]] dx [x] = 0 ˳∫⁰·⁹ o dx = 0 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
0≤x≤0.9
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
Ans 2
Q.81 I .F = exp( ∫ 2/x dx) =x² Now, y.x² = ∫ x².x² dx + c y = x³/5 + cxˉ² Ans 4
Q.82 bf-ec -ae -ab Aˉ¹ =
-1/bd cd -bd
BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
-ad 0 0
0
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
0 0 d A =ͭ
0 b e a c f
now, A¯¹ = A ͭ comparing we get c=0, e=0, f=0, a=1,a=b²,a=d² or b² =1, d² =1 or b = ±1 , d= ± 1 hence there are 4 possible matrices Ans *
Q.83 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
N = 2t² + 3 w = t² -t +2 dw/dt = n dw/dt + w dn/dt = 8t³-6t²+14t-3 dw/dt|at (t=1) = 13 Ans 3
Q.84 √ (x-1)² + y²
=½
√ (x+1)² + y² Solving we get X²+y²-10/3 x+1 = 0 Centre = (5/3 , 0) Hence the circumcentre of the triangle is (5/3 , 0) Ans 4
BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
Q.85 Given lines x/2 = y/-1 = z/2 (x-1)/4 = (y-1)/-2 = (z-1)/ 4 These 2 lines are parallel p(1,1,1) line 1
q(2λ,-λ,2λ)
line2
line pq and line(1 or2) are perpendicular hence (2λ-1)2 + (-λ-1)-1 +(2λ-1)2 = 0 λ = 1/3 q = (2/3,-1/3,2/3) length pq = √2 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
statement 1----true Ans 1 Q.86 1 + 4/3 + 10/9 + …… 1 +(1+1/3)+ (1 + 1/9) + ….. n + (1/3 +1/9 + 1/27 +….) n + ½[1- 1/3ᶯˉ¹] Ans 1
Q.87 Foci of ellipse= √a²-b² =√16-b² Foci of hyperbola = √a²+b² =3 √16-b² = 3 BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
b² =7 Ans 4
Q.88 Tanˉ¹(sin(cosˉ¹√2/3)) Tanˉ¹(1/√3) π/6 Ans 3
Q.89 c is perpendicular to a x b c.(a x b) = 0 1
-2 3
2
3 -1
r
1 2r-1
BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY
=0
AIEEE 2012 ONLINE DETAILED SOLUTION (DATED 26TH MAY)
r= 0 Ans 4
Q.90 n = m(m-1)/2 n-1 = m(m-1)/2 - 1 ᶯC2 = n(n-1)/2 Solving we get ᶯC2 = 3 ͫ ˉ ¹C4 Ans 2
BY SAURAV GUPTA ELECTRONICS & TELECOMM. ENGG.(2ND YEAR) JADAVPUR UNIVERSITY