UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA SISTEMAS DE MICROONDAS CATEDRÁTICO: ALUMNO:
JORGE ALBERTO BECERRA-TURRUBIATES.
OSCAR FRANCISCO PRADO ESPARZA 1559638
LORENZO VITE DE LA CRUZ
1500847
SERGIO CAMPOS JAIME 1410482 EDGAR REYES ZAPATA 1393577 PROYECTO FINAL
TEMA: CALCULO DE ENLACE PUNTO A PUNTO FRECUENCIA: L-M-V N5
A 30/05/16 CIUDAD UNIVERSITARIA, SAN NICOLÁS DE LOS GARZA N.L
INTRODUCCIÓN
PARA LA REALIZACION DEL ENLACE PUNTO A PUNTO MEDIANTE MICROONDAS ES NECESARIO ESPECIFICAR DE LOS PUNTOS QUE VAYAMOS A INSTALAR LAS ANTENAS. PARA ESTO HAY QUE TRAZAR LA TRAYECTORIA CON LINA DE VISTA MEDIANTE CALQUIER APLICACIÓN DE TRAZADO DE RUTAS (GOGLE MAPS, GOGLE EARTH, GPS, ETC). CON AYUDA DE ESTOS SOFTWARES NOS ARROJARA LAS COORDENADAS DE LATITUD Y LONGUITUD DE CADA UNO DE NUESTROS SITIOS.
CARÁCTERISTICAS LOS ENLACES MICROONDAS VIAJAN POR EL ESPACIO LIRE UTILIZANDO COMO MEDIO DE TX EL AIRE , ESTOS ENLACES DEBEN SER EN LINEA RECTA Y CON UNA LINEA DE VISTA ADECUADA PARA SOSTENER VISIVILIDAD UN PUNTO CON EL OTRO, SIN EMARGO MUHAS VECES NOS ENONTRAMOS CON FACTORES QUE LIMITAN NUESTRO ELACE YA SEA POR:
DISTANCIA FACTORES CLIMATOLOGICOS CALIDAD DEL ENLACE INFRAESTRUCTURA
LEVANTAMIENTO DE LAS COORDENADAS DE LOS SITIOS
SITIO “A” TRANSMISOR TORRE DE RECORTIA CD UNIVERSITARIA
LATITUD: 25.433182” N LONGUITUD: 100.183735” O
SITIO “B” TRANSMISIOR TELEVISA MONTERREY
LATITUD: 25.404306” N LONGUITUD: 100.191311” O
CÁLCULO DE ENLÁCE EL DISEÑO DE UN RADIO ENLACE IMPLICA TODO UNA SERIE DE CÁLCULOS QUE PUEDERESULTAR SENCILLOS O TREMENDAMENTE COMPLICADOS, DEPENDIENDO DE LAS CARACTERISTICAS DEL SISTEMA Y DEL TIPO DE PROBLEMA LA QUE NOS ENFRENTAMOS. RESULTA CLARAMENTE INVIABLE REALIZAR LA PLANIFICACION DE UNA RED WIMAX EN UN ENTORNO URBANO SIN AUDA DE UN SIMULADOR DE SOFTWARE, QUE INORPORE MODULOS DE PROPAGACION PRECISOS E INFORMACION DETALLADA SOBRE EL ENTORNO, COMO: EDIFICIOS, VEGETACION,E TC. SIN EMARGO, EL DISEÑO DE UN ENLACE PUNTO A PUNTO DE CORTO ENLACE ENTRE ANTENAS QUE DISPONEN DE VISIÓN DRECTA PUEDEN LLEVARSE ACABO SORE EL PAPEL SIN MAYORES PROBEMAS. PARA ESTOS ULTMIMOS CASOS, LAS CALCULADORAS DE RADIOENLACE RESULTAN DE GRAB UTILIDAD, EXISTIENDO UNA FORMA MUY VARIADA QUE SE ENCUENTRA ACCESIBLE VIA WEB Y QUE NOS FACILITA EL CÁLCULO SISTEMÁTICO DE PARÁMETROS Y VARIABLES MUY TIPICAS COMO:
FRECUENCIA DE ENLACE PERDIDAS EN EL ESPACIO LIRE ALIMENTACION DEL TX GANANCIA DE LA ANTENA ALCANCE BALANCE DE POTENCIAS MARGEN DE FRENTE DE DESVIAMIENTO
CÁLCULO DE PERDIDAS EN EL ESPACIO LIBRE Y RSL. ANALIZAMOS QUE LA POTENCIA DE LA SEÑAL SE REDUCE POR ENSANCHAMIENTO DEL FRENTE DE ONDA EN LO QUE SE CONOCE COMO PERDIDA EN EL ESPACIO LIBRE. LA POTENCIA DE LA SEÑALSE DISTRUBUYE SOBRE UN FRENTE DE ONDA DE ÁREA CADA VEZMAYOR A MEDIDA QUE NOS ALEJAMOS DEL TRANSISOR, POR LO QUE LA DENSIDAD DE POTENCIA DISMINUYE. LdB= 92.45 + 20Log (Dkm) + 20Log (FGhz). NOTA: LA DISTANCIA Y LA FRECUENCIA SIEMPRE DEBEN DE SER EN KM Y GHZ.
LdB: 92.45 + 20 Log (5.47 Km)+ 20 Log (13 Ghz)=
dB.
129.488613573
PARA EL CALCULO DE NIVEL DE SEÑAL DE RECEPCION SE UTILIZA LA SIGUIENTE FÓRMULA:
LINK BUDGET: RECIBE NIVEL DE SEÑAL ( RSL ) :
RSL = P.O. - L + G .CTX .ATX - L + G .CRX .ATX – FSL ENLACE FÓRMULA VIABILIDAD RSL > O = RX (UMBRAL DE SENSIBILIDAD DEL RECEPTOR ). PO = POTENCIA DE SALIDA DEL TRANSMISOR ( DBM). LCTX , LCRX = PÉRDIDA (CABLE , CONECTORES , UNIDAD DE DERIVACIÓN ) ENTRE EL TRANSMISOR / RECEPTOR Y LA ANTENA ( DB ). GATX = GANANCIA DE LA ANTENA DEL TRANSMISOR / RECEPTOR ( DB ) FSL = PÉRDIDA EN EL ESPACIO LIBRE ( DB ) EL MARGEN DE DESVANECIMIENTO SE CALCULA CON RESPECTO AL NIVEL DEL UMBRAL DEL RECEPTOR PARA UNA TASA DE BITS DE ERROR DADO ( BER ) .LA RADIO PUEDE MANEJAR CUALQUIER COSA QUE AFECTA A LA SEÑAL DE RADIO DENTRO DEL MARGEN DE DESVANECIMIENTO PERO SI SE EXCEDE, A CONTINUACIÓN, EL ENLACE PODRÍA BAJAR Y POR LO TANTO, DE ESTAR DISPONIBLES. EL NIVEL DE UMBRAL PARA BER = 10 -6 DE ENERGÍA PARA EQUIPOS DE MICROONDAS QUE SOLÍA SER ALREDEDOR DE 3 DB MAYOR QUE PARA BER = 10 -3 POTENCIA. EN CONSECUENCIA, EL MARGEN DE DESVANECIMIENTO FUE DE 3 DB MAYOR PARA BER = 10-6 DE BER = 10-3. EN LA GENERACIÓN DE NUEVAS RADIOS DE MICROONDAS CON ESQUEMAS DE CORRECCIÓN DE ERROR DE POTENCIA HACIA ADELANTE ESTA DIFERENCIA ES DE 0,5 A 1,5 DB.
NIVEL DE SEÑAL DE RECEPCION RSL= 10 dBm - 2 dB + 44.4 dBi – 129. 488613573 dB + 44.4 dBi – 2 dB =
-40.6486 dBm
HP6-13 1.8 m | 6 ft High Performance Parabolic Reflector Antenna, Single-polarized, 12.713.25GHz
General Specifications Antenna Type
High Performance Parabolic Reflector Antenna
Size, nominal
6 ft | 1.8 m
Polarization
Single
Electrical Specifications Operating Frequency Band
12.7 - 13.25 GHz
Half Power Beamwidth, Horizontal
0.9 degrees
Half Power Beamwidth, Vertical
0.9 degrees
Cross-Polarization Discrimination
30 dB
Front to Back Ratio (F/B)
70 dB
Gain, Low Frequency
44.3 dBi
Gain, Mid Frequency
44.4 dBi
Gain, High Frequency
44.6 dBi
VSWR
1.37:1
Return Loss
-16.1 dB
Mechanical Specifications
Fine Elevation Adjustment
+/- 10 degrees
Mounting Pipe Diameter, Min
4.5 inch | 11.4 cm
Mounting Pipe Diameter, Max
4.5 inch | 11.4 cm
Net Weight
251 lbs | 113 kg
Wind Velocity Operational
90 mph | 145 km/h
Wind Velocity Survival Rating
125 mph | 201 km/h
Mechanical Configuration
HP6
Axial Force (FA)
1680 lbs | 7473 N
Side Force (FS)
832 lbs | 3700 N
Twisting Moment (MT)
2100 ft-lbs | 2847 Nm
Operating temperature range
-40 to +60 C
Max pressure, psig, (if waveguide interface)
5
Fine Azimuth Adjustment
+/- 10 degrees
Regulatory Compliance
FCC
Part 101 Cat. A
ETSI
302217 R1 C3
RoHS-complaint
Yes
Shipping Information
Package Type
Wood Crate
Gross Weight
401 lbs | 181.8 kg
Dimensions, L x W x H
77 x 35 x 80in | 195 x 89 x 203 cm
Shipping Volume
124.77 cu ft | 3.53 cu m
Additional Comments
Choose Radiowaves products for best performance and reliability
Technical Drawings
Radiowaves Glossary Axial Force:
Force applied to the face of the antenna due to wind at specified wind speed
Beamwidth
The total width of the main beam measured in degrees between the 3-dB (half-power) points on either side of the peak of the main beam
Cross Polarization Discrimination (XPD)
The dB difference between maximum received co-polarized signal at electrical boresight and maximum received cross-polarized signal
Front to Back Ratio (F/B)
Gain
The dB difference between maximum received signal at electrical boresight to maximum received signal behind the antenna (180 +/- 40 degrees)
A measure of how well the antenna focuses available energy into a single beam. Larger antennas typically have higher gains and smaller beamwidths.
Gross Weight
Shipping weight, includes weight of antenna plus packaging materials
Net Weight
Weight of antenna only as mounted on tower.
Operating Frequency Band
The frequency limits between which the antenna meets declared specifications. Antennas may operate outside the frequency band with mild performance degradation.
Return Loss
A measure of how much rf energy incident upon the antenna is reflected back from whence it came, expressed as a negative dB value.
Side Force (FS)
Force applied to the side of the antenna due to wind at specified wind speed
Twisting Moment (MT)
The torsional (twisting) moment (force x distance) applied to the mounting pipe due to wind at the specified wind speed.
A measure of how much rf energy incident upon the antenna is reflected back from whence it
VSWR came, expressed as a ratio
Wind Velocity Operational
Wind speed where the antenna deflection is less than or equal to 0.1 degrees
Wind Velocity Survival Rating
Wind speed where the antenna will not suffer permanent damage, but may require repointing.
3
13.3
IDU Specifications
13.3.1
Physical
Dimensions Weight
13.3.2
44.5 mm (1RU) x 430 mm x 305 mm - 1.75” (1RU) x 19 “ x 12 “ 4.6 kg - 10 lbs.
Environmental
Temperature Range
-33º C to + 55º C
Humidity
100% condensing
Altitude
5,000 metres above sea level
13.3.3
“N” Type Connector - Frequencies and Levels
Tx IF
400 MHz @ -35 dBm ±3 dB (@ ODU Input)
Rx IF
140 MHz @ -10dBm ± 3 dB (@ODU output)
Information Bandwidth (-3db)
54 MHz
Up-link Telemetry – Half Duplex
13.5 MHz, AM, -15 dBm ±3 dBm
Down-link Telemetry – Half Duplex
10 MHz, AM, -15 dBm ±3 dBm
DC Voltage
Supply Voltage and Polarity
Power Consumption- Standard Power
22 Watts
Power Consumption - High Power
27 Watts
13.3.4
Telemetry
Initialisation Control Protocol
Telemetry Commands
Telemetry Status Displays Configuration
ODU initiated by IDU during start-up / reset Full control of ODU from IDU LCD/Keypad or via MINet (NMS applications) Proprietary including check sum. 19200 baud, 8 bits, 1 stop bit, no parity (RS232 on AM modulated carrier) 1. TX Power Mute 2. TX Power level 3. TX-IF Attenuation 4. TX-IF frequency 5. TX-IF LO Frequency 6. RX-IF Attenuation 7. RX-IF frequency 8. RX-IF LO Frequency 9. RX-IF LO Frequency 10. Mode of operation: Normal/Loop-Back 1. TX Power level 2. RX Power level 3. Synthesisers Freq. Lock Indications 4. BITE Indications IDU is Master, ODU is slave
Hardware
U, 128k RAM (code/data), 500 K Flash (Boot, Bank A/B code for downland, nonvolatile memory for parameters)
Telemetry Hand-shaking
Acknowledge every IDU request after maximum 30 msec
130
13.4
Transmitters Frequency Range (GHz) Tx/Rx Spacing (MHz) Tx Output Power – Std Power (dBm) (-0 / + 2Power dB over Tx Output – High Power (dBm) (-0 / + 2 dB Tx Output Power Control Range
7 GHz
8 GHz
10.5 GHz
13 GHz
15 GHz
18 GHz
7.1 – 7.9 154 161 245
10.5 – 10.7
12.7 – 13.3
14.5 – 15.4 315 420 490 644
17.7 – 19.7
+24
7.7 – 8.5 116 126 311.3 2 +24
+27
+22
+28
+28
1 dB
Tx Output Mute Level
<-45 dBm
Tx Output Mute Activation Time
<1 msec
Flatness: Entire band
2 dB
Flatness: Over 65 MHz
0.5 dB
Flatness: Over 20 MHz Frequency Stability Spectral Purity (spurii): 1 GHz Spectral Purity (spurii): + 1 GHz SSB Phase Noise @ F=10 kHz SSB Phase Noise @ F=100 kHz SSB Phase Noise @ F=1 MHz
0.2 dB 5 parts per million including aging < -50 dBm < -30 dBm -70 dBc/Hz -85 dBc/Hz -100 dBc/Hz
266
+25
+27
N/A
-10 dBm to Maximum Power
Tx Output Power Step Size
65 91
1010 1560
RECIVER Frequency Range (GHz)
Tx/Rx Spacing (MHz) -3
Receiver Threshold @ BER 10 – 7 MHz Channel ( 2 dB over temperature) -3 Receiver Threshold @ BER 10 – 14 MHz Channel ( 2 dB over temperature) -3 Receiver Threshold @ BER 10 – 28 MHz Channel ( 2 dB over temperature) -6 Receiver Threshold @ BER 10 – 7 MHz Channel ( 2 dB over -6 temperature) Receiver Threshold @ BER 10 – 14 MHz Channel ( 2 dB over -6 temperature) Receiver Threshold @ BER 10 – 28 MHz Channel ( 2 dB over temperature) Noise Figure (Maximum Over Temp.)
7 GHz 7.1 – 7.9
8 GHz 7.7 – 8.5
1 5 4 1 -87 dBm
116 126 311.3 2
13 GHz 12.7 – 13.3
15 GHz 14.5 – 15.4
-86 dBm
101 0 156 0 -85 dBm
-87 dBm
-85.5 dBm
-83 dBm
-83 dBm
-82 dBm
-82.5 dBm
-82.5 dBm
-80 dBm
-80 dBm
-80 dBm
-79 dBm
-79.5 dBm
-79.5 dBm
-83 dBm -80 dBm -77 dBm
-83 dBm -80 dBm -77 dBm
-83 dBm -80 dBm -77 dBm
-82 dBm -79 dBm -77 dBm
-82.5 dBm -79.5 dBm -76.5 dBm
-82.5 dBm -79.5 dBm -76.5 dBm
38 G 37 .5 – 40 70 0 12 60 82 dB 80 dB 77 dB 80 77 74
<4.8 dB
<5.0 dB
<5.7 dB
<6 .2
266
315 420 490 644
-86 dBm
6 5 9 1 -86 dBm
-86 dBm
-84 dBm
-83 dBm
-83 dBm
-81 dBm
-80 dBm
-84 dBm -81 dBm -78 dBm
-83 dBm -80 dBm -77 dBm
<4.2 dB
<4.2 dB
Input Power Range Information Bandwidth (-3dB)
<4.5 <4.5 dB dB -90 dBm to 0 dBm 54 MHz
IF Centre Frequency
140 MHz
IF Bandwidth (-1 dB)
100 MHz
IF Output Power
0 dBm ± 3 dB 1 dB
Power Flatness over IF band Receive Power Resolution
1dB 2 dB
Receive Power Accuracy Spectral Purity: Harmonics Of The Input Freq. Spectral purity: Spurious, F<0.5 MHz Spectral purity: Spurious, F>0.5 MHz SSB Phase Noise @ F=10 kHz SSB Phase Noise @ F=100 kHz
10.5 GHz 10.5 – 10.7
< -15 dB < -40 dBc < -60 dBc -70 dBc/Hz -85 dBc/Hz
18 GHz 17.7 – 19.7
23 GHz 21.2 – 23.6 100 8 120 0
<5.3 dB
26 GHz 24.5 – 26.5
1008
Product Specifications CNT-400 CNT400, CNT® 50 Ohm Braided Coaxial Cable, variable, black PE jacket
Construction Materials Jacket Color
Black
Jacket Material
Nonhalogenated PE
Braid Material
Tinned copper
Shield Tape Material
Aluminum
Dielectric Material
Foam PE
Inner Conductor Material
Copperclad aluminum wire
Dimensions Cable Weight
0.10 kg/m
Diameter Over Dielectric
7.240 mm
Diameter Over Jacket
10.290 mm
Diameter Over Tape
7.391 mm
Inner Conductor OD
2.7400 mm
Nominal Size
0.400 in
Outer Conductor OD
8.080 mm
Electrical Specifications
| 0.285 in | 0.405 in | 0.291 in | 0.1079 in
| 0.318 in
Cable Impedance
50 ohm
Capacitance
78.0 pF/m | 24.0 pF/ft
dc Resistance, Inner Conductor
4.690 ohms/km
| 1.430 ohms/kft
dc Resistance, Outer Conductor
5.610 ohms/km
| 1.710 ohms/kft
dc Test Voltage
2500 V
Jacket Spark Test Voltage (rms)
4000 V
Maximum Frequency
16.20 GHz
Operating Frequency Band
30 – 6000 MHz
Peak Power
16.0 kW
Shielding Effectiveness
>90 dB
Velocity
85%
Environmental Specifications Installation Temperature
40 °C to +85 °C (40 °F to +185 °F)
Operating Temperature
40 °C to +85 °C (40 °F to +185 °F)
Storage Temperature
70 °C to +85 °C (94 °F to +185 °F)
©2016 CommScope, Inc. All rights reserved. All trademarks identified by® or ™ are ed trademarks, respectively, of CommScope.
All specifications are subject to change without notice. See www.commscope.com for the most current information. Revised: January 16, 2016
page 1 of 2
May 20, 2016
Product Specifications CNT-400
General Specifications Cable Type
CNT400
Braid Coverage
90% braid
Brand
CNT®
Mechanical Specifications Bending Moment
0.7 Nm |
0.5 ft lb
Flat Plate Crush Strength
0.7 kg/mm
|
Minimum Bend Radius, Single Bend 25.40 mm Tensile Strength
40.0 lb/in
| 1.00 in
73 kg | 160 lb
Electrical Performance Frequency
Attenuation (dB/100 m)
Attenuation (dB/100 ft)
30 MHz
2.49
0.76
50 MHz
3.18
0.97
150 MHz
4.92
1.50
220 MHz
6.23
1.90
450 MHz
8.86
2.70
900 MHz
12.80
3.90
1500 MHz
16.70
5.10
1800 MHz
18.40
5.60
2000 MHz
19.40
5.90
2400 MHz
21.65
6.60
2500 MHz
22.00
6.70
3000 MHz
24.60
7.50
4000 MHz
28.87
8.80
4500 MHz
30.84
9.40
5000 MHz
32.81
10.00
Regulatory Compliance/Certifications Agency
Classification
RoHS 2011/65/EU
Compliant
China RoHS SJ/T 113642006
Below Maximum Concentration Value (MCV)
ISO 9001:2008
Designed, manufactured and/or distributed under this quality management system
BIBLIOGRAFIA: www.eslared.org.ve/walc2012/.../07-Presupuesto_de_potencia-es-v1.14-Notes.pdf www.analfatecnicos.net/archivos/24.CalculoDeRadioenlace.pdf https://www.google.com.mx/intl/es/earth/ www.radioworks.com/ www.radiowaves.com/en/product/hp6-13 foro.syscom.mx/index.php?p=/discussion/3630/software-airlink-ubiquiti... www.commscope.com/catalog/brand...cnt/.../product_details.aspx... teleport-pskov.ru/files/docs/harris/D-MKT138A-E.pdf