m
m m
m á i á
i
m
m
m
m
m
m
m
m
Different conformations
Different configurations
monformations of ethane Eclipsed co formatio
taggered co formatio
J
m
Wedge-a d-das str ct res
m
m
m
J
Saw orse projectio s
Newma projectio s
J
m m @ torsion
otential energy of ethane as function of torsion angles
ástaggere conformation has otential energy minimum áecli se conformation has otential energy maximum á staggere conformation is lo er in energy than the ecli se by 2 kcal/mole (12 kJ/mole)
hy is the ecli se conformation higher in energy than the staggere conformation?
áRhe H-atoms are too small to get in each other¶s ay-steric factors make u < 10% of the rotational barrier in ethane
Rorsional strain mause by re ulsion of the bon ing electrons of one substituent ith the bon ing electrons of a nearby substituent
fille orbitals re el
m mx mx
Rhe real icture is robably a mixture of all 3 effects á Rhe rotational barrier is (12 kJ/mol) small enough to allo the conformational isomers to interconvert million of times er secon
monformations of butane
m
otential energy of butane as a function of torsion angle
ÿ D D ÿ D mÿ D D ÿ D D
mÿ D D Ô
m
ÿ D D
m ! " # á malculations reveal that at room tem erature ~72% of the molecules of butane are in the ³anti´ conformation, 28% are in ³gauche´ conformation ÿ D
m
ÿ D D
m
6 6 6 6
A
A
A
^
A
66
! !
" # # #
monformations an monformers Butane can exit in an infinite number of conformations (6 most im ortant have been consi ere ), but has only 3 conformers ( otential energy minima)-the t o ³gauche´conformations an the ³anti´ conformations á R - -
6 66
# $ %& $ %
6 666 6
^ ' (
& $
&
&$ ^ @' ')* A + (
& $
6 666 6
î
î
î
6 6
î
, & ( & $ (
& #
6 666 6
î
î
î
6 6
î
& $ !
, & ( & $ (
& #
monformation an hy rogen bon ing
monformation of butane-2,3- iols
mycloalkanes Ring strain o of atoms in ring
3 4 6 7 8
Internal angle in lanar ring
600 00 1080 1200 128 0 130
* a measure of strain er m-atom
All internal angles 10 0m
10 0-internal angle*
4 0 1 0 1 0 -10 0 -1 0 -2 0
u 3 u u u u
áRing strain largest for 3-membere rings, then ecreases through a 4-membere ring an reaches a minimum for member ring
áre iction: lanar -membere ring shoul have the minimum level of ring strain
áRhe ring strain kee s on increasing as the rings get larger after the minimum at
á the ifference bet een any t o in series is very nearly constant at aroun ±660 kJ/mole á assuming there is no strain in the straight-chain alkanes, each extra ±mH2 grou contributes an extra 68 7 kJ/mole to the heat of combution á if cycloalkane is strain free, its heat of combustion shoul be n X 68 7 kJ/mole If there is some strain ,more energy is given out on combustion
Look at the gra h hich sho s, for each ring size: (a) angle strain er mH2 grou (b) heat of combustion er mH2 grou
á Rhe greatest strain is in the 3-membere ring
á Rhe strain ecreases ith ring size an reaches a minimum for 6-membere ring
á Rhe strain then increases, but not as quickly as the angle calculation suggeste : it reaches a maximum at an then ecreases
á Rhe strain remains constant at ~14, not increases stea ily as the angle-strain suggeste
á J $
á % $
myclic com oun s t ist an ben to minimize the 3 ifferent kin s of strain 1 Angle strain 2 Rorsional strain 3 teric strain myclo ro ane á banana bon s oor orbital overla
HmH 11
& '()
áRorsional strain
. '% +% m &* m+Jÿ ' , (m+-ÿ %
Goo overla trong bon
oor overla eak bon
myclobutane
to re uce torsional angle myclobutane
, %)
6
$
# # & $
# - (
^
( î
6 . # $
# & & ( # ( ( $
6 . # $
# & ( ) &
& & *
×
×
×
× × ×
×
myclo entane
× ×
×
×
×
× ×
& × ×
× ×
×
×
×
× ×
× ×
×
×
× ×
×
áone carbon atom is bent u ar s áRhe molecule is flexible an shifts conformation constantly áHence each of the carbons assume the ivotal osition in ra i succession
áRhe a itional bon angle strain in this structure is more than com ensate by the re uction in ecli se hy rogens
á ith little torsional strain an angle strain, cyclo entane is as stable as cyclohexane
66
$
R /( ( 0 %1 # */ 0 R m 2
# & ( & $ $
$
)#
( & $ *
# & $
$ $ $
)# - ( * î î . # $
) & $ *
$ )$ $ *
. # / ( & & $
& ( ( #
myclohexane
mhair conformation
flag ole hy rogens (- ×
×
um of the van er
aals ra ii = 2 4 A0
× × Boat conformation
× × ××
×
×
e man rojection of the boat conformation
×
× ×
×
×
×
×
×
× ×
×
×
×
×
× × ×
× ×
× ×
6 6 66
×
× ×
m
m
R
m
R
m
m
m
^
R
á Rhe energy ifference bet een the chair, boat, an t ist conformation of cyclohexane are lo enough to make their se aration im ossible at r t At room tem erature a rox 1 million introversions occur each other secon
á ore than % of the molecules are estimate to be in chair conformation at any given time
onosubstitute cyclohexane ±
± Rhis conformation is lo er in energy
hy? ×
±
hen X=mH3, conformer ith e in axial is higher in energy by 7 3 kJ/mol than the corres on ing equatorial conformer
Result: 20:1 ratio of equatorial:axial conformer at 200 m
×
1,3- iaxial interaction
±
±
×
Rhe black bon s are antieri lanar (only one air sho n)
× ×
±
Rhe black bon s are synclinal (gauche) (only one air sho n)
±
±
monc of equatorial conformer "3 monc of axial conformer
±
u
u
uu
uu
m ©× ©×
©× 3
©×
×
×
R
x î
©×
î ©×
favo red
î ©×
m×
m× m× m× m×
m× 1 gauche-butane interaction 0 kcal/mol
4 gauche-butane interaction 4 x 0 kcal/mol = 3 6 kcal/mol
Difference in stability bet een the conformational isomers
3 6 - 0 = 2 7 kcal/mol
3
m×
m×
m×
m×
m× m× m×
×m
This has 3 gauche-butane interactions
, *
2 /Y0
m×
3 m× m×
×m
m×
m×
>ery ba steric situation ~ kcal/mol (4 x 0 = 3 6 kcal/mol + ethyl-ethyl interaction) m×
m×
m×
×m m× m×
It is a resolavable molecule 2-gauche-butane interaction = 1 8 kcal/mol
m×
m×
×m m×
m× m×
' 2'* !3(-1 # m×
m× ×m m×
m×
R 6 6
m×
roblem: hich of the follo ing com oun s are resolvable, an hich are non resolvable? hich are truly meso? a) cis-1,2-cyclohexane iol; b) trans-1,2-cyclohexane iol; c) cis-1,3-cyclohexane iol; ) trans-1,3-cyclohexane iol; e) cis-1,4-cyclohexane iol; f) trans-1,4-cyclohexane iol
Hint: ©H ©H ©H ©H
©H ©H ©H on resolvable (easily interconvertible by fli
©H trans (resolvable) ing) ©H
©H H©
©H
©H
©H
cis (meso)
trans (resolvable) ©H
©H H©
H©
©H ©H
achiral (absence of chirality center)
6
)A *
0 1 ) *
2 )A *
0 1 2 )A - 3 *
0 1 & & $ /
4 2 4 5 3 - +
6
2 61 &
+
+
0
# 1 8 +
$
7
+
+
1 # 8 + $
6
& $ ^
-
+
)$ " * )$ * ) *
< -
2 )2 * 6 1 &
9
# & $ +
9 $ - +
5 7 : & ; 0 3 + 3
Rigi molecules from cyclohexane conformers
monformational equilibrium in 1- henyl-1-methyl cyclohaxane
©H
m©2H
©
©
H© m©2H Lactonization of 3-hy roxy cyclohexane carboxylic aci
m©2H m© H 2
©
©
©
H©2m m©2H myclic anhy ri e formation from 1,3-cyclohexane icarboxylic aci
©H
©H
©
H© ©H
Intramolecular H-bon ing in 1,3cyclohexane iol
H ©
H
6 6 6
+
9
+
-
0 $ $
& $ & $ & & &
2
1 1 = # $ 3 3 #
5 & ) *
#
^ >?
^ > A -
u@m
m & (
# m u@m m - u@m
^ >) * ) *
- (
& #
( & #
î
î
2 eliminations have anti- eri lanar transition states R 6 6 × 6 ± 6
In 2 eliminations, the ne R bon is forme by overla of the m-H x bon ith the m-X x* antibon ing orbital
2 eliminations have anti- eri lanar transition states
î 6 6 6
î 6 6 6
o
m
©6 6 6
©×
m m
(faster) m
m p
×
p
×
m×
×
m
(slower)
m p
p
m
p
×
×
m
©×
m
×
m
×
m×
×
p
m×
×
m
×
×
×
m
m
m
m
m%×%4
m m
m m
xhereas
m
m
m
m%×%4
m m
m m
m
m m m
m%×%4
m
m m
m
m
m m
roblem: ©n treatment ith the aromatic base yri ine, racemic 1,2- ibromo-1,2- i henyl ethane loses HBr to yiel trans-1-bromo-1,2- i henyl ethane; In contrast the meso ibromi e loses Br 2 to yiel trans-1,2- i henyl ethene uggets a mechanism? Hnit: Br
Br h
H
H
Br
h
h Br
H
H
H
H
h
h
Br
Br2 loss is not favore
Br
h Racemic
H h H h
h H
hH
Br
H
Br h meso
H
h Br
Br
H
Br
-HBr
Br
Br h h
Br Br
h h
h H
-Br2 h