4/3/2015
Double Integrals Calculator Symbolab Solutions
My Notebook
Practice
New! Blog
English
Help
Double Integrals Calculator Solve double integrals step by step Enter a topic
Algebra
x
Matrices & Vectors Functions & Graphing
Like
full pad » 2
x
□
x□
log□
√☐
√☐
□
≤
≥
□ □
∂ ∂x
∫
∫□
□
lim
∑
∞
(f ◦ g)
d dx
(☐)'
x
◦
θ
Follow
π
Trigonometry Calculus Limits
xy
1 1
∫0 ∫0
Go
xe dxdy
Integrals
Examples »
Indefinite Integrals Definite Integrals Antiderivatives
Related Symbolab blog posts
Solution
Double Integrals Triple Integrals Multiple Integrals Derivatives Derivative Applications
ln ( 3 ) 1 xy ∫0 xe dxdy = 2 ln ( 3 )
∫0
« Hide Steps
−1
Steps
In the previous post we covered th
Series ODE (new) Laplace Transform (new)
Advanced Math Solution Integral Calculator, commo functions
integration rules (click here). Befo
ln ( 3 ) 1 xy ∫0 xe dxdy
∫0
continue with more advanced tech will cover some common integrals e...
Statistics Hide Steps
y 1 ∫0 xexydx = e ( y −21 ) + 1
y
1
∫0 xexydx xy
xy
y
y
Hide Steps
∫ xexydx = xe − e 2 + C
Compute the indefinite integral:
Advanced Math Solution Integral Calculator, the bas
Integration is the inverse of differe
∫ xexydx
Even though derivatives are fairly s
forward, integrals are not. Some in Apply Integration By Parts:
problems require techniques such
∫ uv' = uv − ∫ u'v yx
yx
u = x, u' = 1, v' = e , v = e
y
yx
yx
= x e − ∫ 1 e dx y y xy
= xe
y
xy
− ∫ e dx y
xy
xy
y
y
Hide Steps
∫ e dx = e 2 xy
∫ e dx y
Take the constant out:
∫a · f ( x ) dx = a · ∫f ( x ) dx
xy
= 1 ∫ e dx y
u = xy:
du = ydx,
∫f ( g ( x ) ) · g' ( x ) dx = ∫f ( u ) du,
Apply Integral Substitution:
u = g(x)
dx = 1 du y
u = 1 ∫ e 1 du y y u
= 1 ∫ e du y
y
Take the constant out:
∫a · f ( x ) dx = a · ∫f ( x ) dx
u = 1 1 ∫ e du y y
http://www.symbolab.com/solver/doubleintegralscalculator/%5Cint_%7B0%7D%5E%7Bln3%7D%5Cint_%7B0%7D%5E%7B1%7D%20xe%5E%7Bxy…
1/4
4/3/2015
Double Integrals Calculator Symbolab Use the common integral:
= 1 1 e
∫ eudu = eu
u
y y
Substitute back
= 1 1 e
u = xy
xy
y y
Simplify xy
= e
2
y
xy
xy
= xe
− e
y
2
y
Add a constant to the solution xy
xy
= xe
− e
y
2
y
+C
b ∫a f ( x ) dx = F ( b )
(
y
(
y
xy
y
( ) y
− F ( a ) = limx→ b− ( F ( x ) ) − limx→ a+ ( F ( x ) )
xy
limx→ 0+ xe
Hide Steps
y 1 ∫0 xexydx = e ( y 2− 1 ) − − 12
Compute the boundaries:
−e
2 y
)
= − 1 2
)
y = e ( y − 1 )
y
= − 1 2 y xy
xy
limx→ 1− xe
−e
2 y
2
y
y
= e ( y − 1 ) 2
y
y = e ( y − 1 ) − − 1
( ) 2 y
2
y
y = e ( y − 1 ) − − 1
( ) 2 y
2
y
Simplify y = e ( y − 1 ) + 1 2
y
ln ( 3 )
= ∫0
ln ( 3 )
∫0
(
(
)
y
e ( y − 1 ) + 1 dy 2 y Hide Steps
)
y
e ( y − 1 ) + 1 dy = 2 − 1 ln ( 3 ) 2 y
ln ( 3 ) ey ( y − 1 ) + 1 dy 2
∫0
y
Compute the indefinite integral:
y y ∫ e ( y −21 ) + 1 dy = ey − e ( y − 1 ) − 1 + C
y
y
Hide Steps
y
y
∫ e ( y −21 ) + 1 dy y
Apply the Sum Rule:
∫f ( x ) ± g ( x ) dx = ∫f ( x ) dx ± ∫g ( x ) dx
y = ∫ e ( y − 1 ) dy + ∫ 1 dy 2
y
2
y
http://www.symbolab.com/solver/doubleintegralscalculator/%5Cint_%7B0%7D%5E%7Bln3%7D%5Cint_%7B0%7D%5E%7B1%7D%20xe%5E%7Bxy…
2/4
4/3/2015
Double Integrals Calculator Symbolab Hide Steps
y y ∫ e ( y 2− 1 ) dy = ey − e ( y − 1 )
y
y
y
∫ e ( y 2− 1 ) dy y
∫ uv' = uv − ∫ u'v
Apply Integration By Parts:
y
y
u = e ( y − 1 ) , u' = e y, v' = 1 , v = − 1 y
2
y
( y )
y
y
( y )
= e ( y − 1 ) − 1 − ∫ e y − 1 dy y y = − e ( y − 1 ) − ∫ − e dy y
Hide Steps
∫ − eydy = −ey ∫ − eydy ∫a · f ( x ) dx = a · ∫f ( x ) dx
Take the constant out:
y
= −∫ e dy
Use the common integral:
= −e
∫ eydy = ey
y
y y = − e ( y − 1 ) − −e
(
y
)
Simplify y y = e − e ( y − 1 ) y Hide Steps
∫ 12 dy = − 1 y
y
∫ 12 dy y
−2 1 2 =y y
=∫ y
−2
dy
Apply the Power Rule:
= y
∫xadx = x
a+1
a+1
,
a ≠ −1
−2+1
−2 + 1
Simplify
= − 1 y y y = e − e ( y − 1 ) − 1 y y
Add a constant to the solution y y = e − e ( y − 1 ) − 1 + C y y
Compute the boundaries:
ln ( 3 )
∫0
(
y
)
e ( y − 1 ) + 1 dy = 2 − 1 ln ( 3 ) 2 y
Hide Steps
b
∫a f ( x ) dx = F ( b ) − F ( a ) = limx→ b− ( F ( x ) ) − limx→ a+ ( F ( x ) )
http://www.symbolab.com/solver/doubleintegralscalculator/%5Cint_%7B0%7D%5E%7Bln3%7D%5Cint_%7B0%7D%5E%7B1%7D%20xe%5E%7Bxy…
3/4
4/3/2015
Double Integrals Calculator Symbolab
(
)
y y limy→ 0+ e − e ( y − 1 ) − 1 = 1
y
y
=1
(
)
y y limy→ln ( 3 ) − e − e ( y − 1 ) − 1 = 2 y y ln ( 3 )
= 2
ln ( 3 )
= 2
ln ( 3 )
= 2
ln ( 3 )
−1
Notes add notes here
−1
= 2 −1 ln ( 3 )
Save
Examples
∫∫
− 1 dxdx x
2 1 1 ∫0 ∫0 x 2 dydx
1+y
∫∫x
2
1 1
∫0 ∫0 xy dydx
© EqsQuest 2012
home / blog / about / team / / help
http://www.symbolab.com/solver/doubleintegralscalculator/%5Cint_%7B0%7D%5E%7Bln3%7D%5Cint_%7B0%7D%5E%7B1%7D%20xe%5E%7Bxy…
4/4