Equation Sheet for E MCH 212 — Dynamics Miscellaneous If ax2 + bx + c = 0, then x = −b ±
√
. b2 − 4ac 2a. Law of Cosines: C 2 = A2 + B 2 − 2AB cos θ.
For two planar orthogonal coordinate systems with unit vector pairs (ˆ ua , u ˆb ) and (ˆ uc , u ˆd ), the first system can be written in of the second using: u ˆa = (ˆ ua · u ˆc ) u ˆc + (ˆ ua · u ˆd ) u ˆd
and
u ˆb = (ˆ ub · u ˆc ) u ˆc + (ˆ ub · u ˆd ) u ˆd
Elementary (1-D) Motions Position: q(t); Velocity: v = q˙ = dq/dt; Acceleration: a = q¨ = dv/dt = d2 q/dt2 = vdv/dq. Z t Z t Z t Given a = a(t): v(t) = v0 + a(t) dt q(t) = q0 + v0 (t − t0 ) + a(t) dt dt t t0 t0 Z 0v Z v 1 v Given a = a(v): t(v) = t0 + dv q(v) = q0 + dv a(v) a(v) v0 v Z q Z q0 dq Given a = a(q): v 2 (q) = v02 + 2 a(q) dq t(q) = t0 + v(q) q0 q0 Rectilinear (1-D) Motion Position: s(t); Velocity: v = s˙ = ds/dt; Acceleration: a = s¨ = dv/dt = d2 s/dt2 = vdv/ds. For constant acceleration ac (the second line are the corresponding rotation equations): v 2 = v02 + 2ac (s − s0 )
v = v0 + ac t
s = s0 + v0 t + 12 ac t2
ω 2 = ω02 + 2αc (θ − θ0 )
ω = ω0 + αc t
θ = θ0 + ω0 t + 12 αc t2
General Motions—Time Derivative of a Vector ~ = Au ~ A|, ~ and letting ω ~ Given A ˆA , with u ˆA = A/| ~ A be the angular velocity of the vector A: u ˆ˙ A = ω ~ ×u ˆA
~˙ = A˙ u ~ A ˆA + ω ~ ×A
~¨ = A¨ u ~+ω ~ A ˆA + 2~ ωA × A˙ u ˆA + ω ~˙ A × A ~A × ω ~A × A
2D Motions—Cartesian Coordinates/Components Position: ~r = x ˆı + y ˆ;
Velocity: ~v = d~r/dt = x˙ ˆı + y˙ ˆ;
Acceleration: ~a = d~v /dt = d2~r/dt2 = x ¨ ˆı + y¨ ˆ
2D Motions—Normal-Tangential Components ~v = v u ˆt
˙ v = ρ|θ|
~a = at u ˆt + an u ˆn
at = v˙
an = ρθ˙2 = v 2 /ρ
2D Motions—Polar Coordinates/Components ~rr = r u ˆr ~a = ar u ˆr + aθ u ˆθ
~v = vr u ˆ r + vθ u ˆθ 2 ˙ ar = r¨ − rθ
vr = r˙
vθ = rθ˙
aθ = rθ¨ + 2r˙ θ˙
Newton-Euler Equations F~ = m~a;
Fx = max ;
Fy = may ;
Fn = man ;
Ft = mat ;
Fr = mar ;
Fθ = maθ
Last modified: December 11, 2010
Balance of Work & Energy Z U1-2 = F~ · d~r
T = 21 mv 2
path
Vg = W y = mgy
T1 + U1-2 = T2 Ve = 21 kδ 2
T1 + V1 + (U1-2 )nc = T2 + V2
Balance of Impulse & Momentum t2
Z
d(m ~v ) F~ = = p~˙ dt
F~ dt = m~v2 − m~v1
t1
Impact of Smooth Particles For a coefficient of restitution e, in the direction along to the line of impact (LOI) or n direction: + v + − vA vseparate e= = B − − vapproach vA − v B
Total linear momentum is conserved in the n direc+ + − − tion: (mA vA +mB vB = mA vA +mB vB )n . Velocity of each particle is conserved perpendicular to the LOI + + − − (t direction): (vA = vA )t and (vB = vB )t .
Angular Impulse-Momentum Principle ~hP = ~rQ/P × m~vQ
~ P = ~h˙ P + ~vP × m~vQ M
Z
t2
~r × F~ dt =
t1
Z
t2
~ P dt = ~hP 2 − ~hP 1 M
t1
Rigid Body Kinematics ~vB = ~vA + ~vB/A = ~vA + ω ~ body × ~rB/A 2 ~aB = ~aA + ~aB/A = ~aA + α ~ body × ~rB/A + ω ~ body × (~ ωbody × ~rB/A ) = ~aB = ~aA + α ~ body × ~rB/A − ωbody ~rB/A
Moments of Inertia (IG )disk = 12 mr2
(IG )rod =
2 1 12 ml
(IG )plate =
2 1 12 m(a
+ b2 )
(IG )sphere = 52 mr2
2 Parallel Axis Theorem: IA = IG + md2 ; Radius of Gyration: IA = mkA
Equations of Motion for a Rigid Body The general equations of motion for a rigid body are given by F~ = m~aC and by the following equations for the moments about an arbitrary point P , which is on the rigid body: ~ P = IG α M ~ + ~rG/P × m~aG
or
~ P = IP α M ~ + ~rG/P × m~aP
~ G = IG α If you sum moments about the mass center G, then M ~. Work-Energy for a Rigid Body The work-energy principle is the same as that for particles. The kinetic energy of a rigid body is: 2 T = 12 mvG + 21 IG ω 2 (G is the mass center) Unit Conversions and Miscellaneous 1 mi = 5280 ft;
g = 32.2 ft/s2 = 9.81 m/s2 ;
m (slugs) = [W (pounds)]/g
GmA mB F~on A = u ˆB/A 2 rAB
Last modified: December 11, 2010