Errata Sheet for Aircraft Propulsion, 2nd Ed., 2014
Page
Line Number
27 35 36 43 44
3rd line in 3rd Paragraph Equation 2.56 Equation 2.57 Below Eq. 2.79, 3rd line 15 from top
51 52 57
75
Figure
Table Change mote (u+du) -udρ LHS is the pressure… The entropy remains constant, hence
10 from top 13 from bottom 5 from bottom
top example
Change to more (u-du) +udρ RHS is the pressure…
Equation 2.61a Equation 2.101 angle θ
p
t1
/ pt * pt 2 / pt *
p
t1
/ pt
p
t1
[delete this part of the sentence] Equation 2.63 Equation 2.102a angle θ [note the turning angle is called “deflection angle” and is labeled δ in FIGURE 2.23]
/ pt * pt 2 / pt *
p
t1
/ pt *
106
last line of Problem 2.20
p2 and p2
p2 and ρ2
106 126 176 177 196
2nd line Problem 2.21 Equation 3.39 2 lines from bottom 2 lines from top Last sentence
1 100 kPa
p1 100 kPa
Internal-Thrust ,mixed-out=1594 1.594 kJ/kgK=1154.7 K …into Equation 4.90
Internal Thrust ,mixed-out=1094 1.094 kJ/kgK=1682.7 K …into Equation 4.91
205
Equation 4.120 box
(ideal) thrust
specific work
206 206
4.38 caption 4 line from bottom
thrust πd(78.24 kPa)
specific work πd=(78.24 kPa)
206 207 207 244 244
Last equation 2nd line 3rd line line 2 from 2nd paragraph Equation 4.202)
𝜋𝑐 ptTt4 tλ …rate of kinetic ...
𝜋𝑐 tTt4 τλ rate of residual kinetic …
244 244
th
𝛾𝑐 𝑒𝑐 ∗(𝛾𝑐 −1)
𝑉2
𝑉2
𝑉2
𝛾𝑐 −1 𝑒𝑐 ∗(𝛾𝑐 )
(𝑉 −𝑉 )2
𝑉2
13th line from bottom 9 from bottom of last paragraph
𝑚̇𝑝 ( 1 + 𝜃1 − 0 ) 2 2 2 Aquations axial kinetic energy
𝑚̇𝑝 1 0 + 𝑚̇𝑝 𝜃1 2 2 Equations residual axial kinetic energy
244
Equation 4.206
𝑚̇𝑝 (
𝑚̇𝑝
245
Equation 4.210
𝜌0 𝑉𝑝 𝐴𝑝 (
245
Equation 4.211
𝑉12 2
−
𝑉02
2 𝑉12
)
−
𝑉02
3 𝑉1 2
2 2 1 𝑉1
2 𝑉0
2 𝑉0
)
( ) − ( )−
(𝑉1 −𝑉0 )2
2 (𝑉1 −𝑉0 )2
𝜌0 𝑉𝑝 𝐴𝑝 3
1 𝑉1 2
2 1 𝑉1
1
2
2 𝑉0
2 𝑉0
2
( ) − ( )−
1
246
Example 4.18
3 𝑉1 2
1 𝑉
3
1 𝑉1 2
1 𝑉
1
2 𝑉0
2 𝑉0
2
2 𝑉0
2 𝑉0
2
( ) − ( 1) −
in first equation
( ) − ( 1) −
V1/V0=1.127 V1/V0=1.225 V1=112.7 m/s V1=122.5 m/s Vp=(100+112.7)/2=106.4 m/s Vp=(100+122.5)/2=111.25 m/s 𝐹𝑝𝑟𝑜𝑝 ≈ 𝜌0 𝑉𝑝 𝐴𝑝 (𝑉1 − 𝑉0 ) ≈ 5.821 𝑘𝑁 (This is about 1,310 lbf) 𝐹𝑝𝑟𝑜𝑝 ≈ 𝜌0 𝑉𝑝 𝐴𝑝 (𝑉1 − 𝑉0 ) ≈ 10.79 𝑘𝑁 (This is about 2426.4 lbf) 𝑚̇0 = 𝑚̇𝑝 ≈ 𝜌0 𝑉𝑝 𝐴𝑝 = 458.3 𝑘𝑔/𝑠 𝑚̇0 = 𝑚̇𝑝 ≈ 𝜌0 𝑉𝑝 𝐴𝑝 = 479.7 𝑘𝑔/𝑠 FpropV0=0.5821 MW FpropV0=1.08 MW ηp ≈ (2V0)/(V0+V1)=94% ηp ≈ (2V0)/(V0+V1)=89.9% 𝐹𝑝𝑟𝑜𝑝 𝑉0 𝐹 𝑉 𝜂𝑝𝑟𝑜𝑝 ≡ ≈ 48.5% 𝜂𝑝𝑟𝑜𝑝 ≡ 𝑝𝑟𝑜𝑝 0 ≈ 89.9%
247
℘𝑝
𝜏𝑝𝑟𝑜𝑝
264
𝑉̅𝜃𝑝′ ≈25 m/s 𝑉̅𝜃1 ≈25.8 m/s ℘𝑝 = =≈ 11.5 𝑘𝑁. 𝑚 𝜔
℘𝑝
𝜏𝑝𝑟𝑜𝑝
𝑉̅𝜃𝑝′ ≈24 m/s 𝑉̅𝜃1 ≈25.1 m/s ℘𝑝 = =≈ 11.46 𝑘𝑁. 𝑚 𝜔
Problem 4.13
nozzles are convergent
442 479 480
nozzles are convergentdivergent and perfectly expanded 9th line from bottom Table 7.2 HO NO rd 3 from top Me Me Replace Figures 7.31 and 7.32 and their captions with the ones below
519
Problem 7.13
The last sentence goes at the end of the problem.
534
Equation 8.18
559
Line 8
W2 ≥ 0.62 W1
W2 ≥ 0.72 W1
559
10
Equation 8.20
Equation 8.70
571
1
𝑊𝜃1 = 3253
595
𝑊𝜃1 = 𝐶𝑧1 𝑡𝑎𝑛𝛽1
8.52
𝑚 𝑠
𝑊𝜃1 = 325.3
Rator
Rotor
𝑚 𝑠
623
13 from bottom
ruputure
rupture
657
7
graph Equation 9.7b
graph Equation 9.9b
663
First equation in solution
𝐶21
𝐶12
666
Equation 9.24
(9.24)
(9.24a)
667
Insert this sentence and equation before the first paragraph: Therefore, from continuity of incompressible fluid, we note that the radial velocity, Cr is inversely proportional to radius, i.e.,
2
rCr const. or Cr
σi-1
1 r
(9.24b)
σi=1
672
8
683 722
Figure P9.22 Ω ω The right-hand column of solution (Top Eq) /1157≈1889 K /(1157x2)≈1674 K The right-hand column of solution (Next Eq) /1157≈1865 K /(1157x2)≈1662 K 1st column, 9th line from bottom and 771 K and 704 K nd st 2 from bottom of 1 column σn2=0.2 σn2=2.0 Example 11.4 Item 9 in the 1st column Delete p8=p18=p0 Item 12 in the 2nd column πd=0.995 πd=0.98 Example 11.4 τcH=2.1184 τcH=2.24 πcH=10.64 πcH=12.68 τf=1.3304 τf=1.20 πf=2.458 πf=1.78 α=7.66 α=6.77 Problem 11.13 (7th line from bottom) πd=0.995 πd=0.98 Problem 11.19 Delete p8=p18=p0 Problem 12.9 Assume MR1=MR2 Clarification Note: the definitions used under U.S. Standard Atmosphere SI Units are intended for the table on Page 906 Equation (B.7) Insert “=” sign before the bracket (see equation 2.92) Value of T/T* at Mach 0.2 is 1.1905+E00 [not 1905E+00 that is in the table] Equation D.3 γ=1 γ+1
747 752 797
798
817 818 900 905 907 908 937
3
Afterburner total pressure loss (dry mode) 1 0.95 0.9
pte/pti
0.85 CD=
0.8 0.75 0.7
0.5 0.75 1.0 1.25
0.65 0.6 0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Mi FIGURE 7.31 Afterburner total pressure loss due to flameholder drag (γi=γe=1.33)
Afterburner exit Mach number (dry mode) 1 0.9
CD=
0.8
1.0 1.25
Me
0.7 0.6 0.5 0.4 CD=
0.3
0.5 0.75
0.2 0.1 0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Mi FIGURE 7.32 Frictional choking of afterburner caused by flameholder drag (γi=γe=1.33)
4