Derivative Formulas In the following, u and v are functions of x, and n, e, a, and k are constants. 1. f '( x) = lim h →0
f ( x + h) − f ( x ) h
The Definition of the Derivative.
2.
d (k ) = 0 dx
The derivative of a constant is zero.
3.
d du k ( u ( x) ) ) = k ( dx dx
The derivative of a constant times a function.
4.
d n du u ) = nu n −1 ( dx dx
The Power Rule (Variable raised to a constant).
5.
d du dv (u + v ) = + dx dx dx
The Sum Rule.
6.
d du dv (u − v ) = − dx dx dx
The Difference Rule.
7.
d ( uv ) = uv '+ vu ' dx
The Product Rule.
8.
d ⎛ u ⎞ vu '− uv ' ⎜ ⎟= dx ⎝ v ⎠ v2
The Quotient Rule.
9.
dy dy du = dx du dx
The Chain Rule.
10.
d ( f ( g ( x) ) = f ' ( g ( x) ) g ' ( x ) dx
Another Form of the Chain Rule.
11.
d du ( sin u ) = cos u dx dx
The Derivative of the Sine.
12.
d du ( cos u ) = − sin u dx dx
The Derivative of the Cosine.
13.
d du ( tan u ) = sec2u dx dx
The Derivative of the Tangent.
14.
d du ( cot u ) = −csc2u dx dx
The Derivative of the Cotangent.
15.
d du ( sec u ) = sec u tan u dx dx
The Derivative of the Secant.
16.
d du ( csc u ) = − csc u cot u dx dx
The Derivative of the Cosecant.
17.
du d 1 Sin −1u ) = ( dx 1 − u 2 dx
The Derivative of the Inverse Sine.
18.
d −1 du Cos −1u ) = ( dx 1 − u 2 dx
The Derivative of the Inverse Cosine.
19.
d 1 du Tan −1u ) = ( dx 1 + u 2 dx
The Derivative of the Inverse Tangent.
20.
d −1 du Cot −1u ) = ( dx 1 + u 2 dx
The Derivative of the Inverse Cotangent.
21.
1 du d Sec −1u ) = ( 2 dx u u − 1 dx
The Derivative of the Inverse Secant.
22.
−1 du d Csc −1u ) = ( dx u u 2 − 1 dx
The Derivative of the Inverse Cosecant.
23.
d 1 du ( ln u ) = dx u dx
The Derivative of the Natural Log.
24.
d 1 du ( log a u ) = dx u ln a dx
The Derivative of the log to base a.
25.
d u du e ) = eu ( dx dx
The Derivative of e raised to a variable.
26.
d u du a ) = a u ln a ( dx dx
The Derivative of a constant raised to a variable.