El Sistema de Numeración Egipcio Santiago Casado
[email protected]
Desde el tercer milenio A.C. los egipcios usaron un sistema deescribir los números en base diez utilizando los geroglíficos de la figura para representar los distintos ordenes de unidades.
Se usaban tantos de cada uno cómo fuera necesario y se podian escribir indistintamente de izquierda a derecha, al revés o de arriba abajo, cambiando la orientación de las figuras según el caso. Al ser indiferente el orden se escribían a veces según criterios estéticos, y solían ir acompañados de los geroglíficos correspondientes al tipo de objeto (animales, prisioneros, vasijas etc.) cuyo número indicaban. En la figura aparece el 276 tal y como figura en una estela en Karnak. Estos signos fueron utilizados hasta la incorporación de Egipto al imperio romano. Pero su uso quedó reservado a las inscripciones monumentales, en el uso diario fue sustituido por la escritura hierática y demótica, formas más simples que permitian mayor rapidez y comodidad a los escribas
Numeración egipcia De Wikipedia, la enciclopedia libre Saltar a: navegación, búsqueda
El sistema de numeración egipcio permitía representar números, desde el uno hasta millones, desde el inicio del uso de la escritura jeroglífica. A principios del tercer milenio a. C. los egipcios disponían del primer sistema desarrollado decimal –numeración de base 10. Aunque no era un sistema posicional, permitía el uso de grandes números y también describir pequeñas cantidades en forma de fracciones unitarias: las fracciones del Ojo de Horus.
Numeración en bajorrelieve con jeroglíficos egipcios.
Contenido [ocultar] •
1 Escritura de los números
•
2 Números cardinales
•
3 Nombres de las cifras
•
4 El cero
•
5 Números ordinales
•
6 La escritura hierática
•
7 Operaciones matemáticas ○
7.1 Sumas y restas
○
7.2 Fracciones
•
8 Véase también
•
9 Notas
•
10 Enlaces externos
[editar] Escritura de los números En el Antiguo Egipto se podían representar las cifras con números o palabras (fonéticamente): como "30" o "treinta". La representación fonética del número treinta, sería:
mientras que la expresión numérica
de 30, era:
Sin embargo, no era muy común representarlos mediante sus nombres, con la excepción de los números uno y dos.
[editar] Números cardinales Los siguientes signos jeroglíficos eran usados para representar las diferentes potencias de diez en la escritura de izquierda a derecha. Valor
1
10
Jeroglífic o
Asa o Trazo herradur Descripc vertical a ión (bastoncit invertida o). .
Los demás valores se expresaban con la repetición del símbolo, el número de veces que fuera necesario. Por ejemplo, el bajorrelieve de Karnak, que habla del botín de Thutmose III (siglo XV a. C.) (Museo del Louvre, París), muestra el número 4622 como:
100
1.000
10.00 1 millón, o 100.000 0 infinito
o
Heh: Cuerda Flor de hombre Renacua enrollad loto Dedo arrodillado jo o a en estilizad . con las rana. espiral. a. manos levantadas.
Está escrito de izquierda a derecha y de arriba a abajo pero en el grabado original en piedra están de derecha a izquierda y los signos están invertidos (los signos jeroglíficos podían ser escritos en ambas direcciones, de derecha a izquierda o de izquierda a derecha, incluso verticalmente).
[editar] Nombres de las cifras Las cifras egipcias tienen los siguientes nombres. Nombres de las cifras en jeroglíficos
( )
Transliter ación
Transcrip ción
Val or
wˁ
ua
1
snw
senu
2
ḫmt
jemet
3
(ỉ)fdw
fedu
4
d(ỉ)w
diu
5
ỉsw, sỉsw o sỉrsw
sisu
6
sfḫw
sefeju
7
ḫmnw
jemenu
8
psḏ
pesedyu
9
[editar] El cero En el Papiro Boulaq 18, datado en la dinastía XIII, hay un símbolo para el cero: el término nfr, según Lumpkin.[1] El escriba utiliza el signo hierático nfr que en escritura jeroglífica es
.
[editar] Números ordinales Para escribir un número ordinal, los egipcios utilizaron tres formas diferentes: Indicaban el número ordinal: primero, mediante el jeroglífico tpy
Para escribir los números ordinales: segundo a noveno, usaban los números cardinales, añadiendo el sufijo nu:
Los números ordinales décimo en adelante, se indicaban mediante el participio del verbo llenar: mḥt
[editar] La escritura hierática En contra de lo que pueda parecer, la escritura jeroglífica de los números apenas fue empleada en la vida diaria. Como la mayor parte de los textos istrativos y contables estaban escritos en papiro o en ostraca en vez de grabarse en piedra (como si fueran textos jeroglíficos), la gran mayoría de los textos que empleaban el sistema numeral egipcio utilizaban la notación hierática. Se pueden encontrar muestras de numerales escritos en hierático desde el periodo arcaico. Los papiros de Abusir, datados durante el Imperio Antiguo de Egipto, son un conjunto importante de textos que utilizan numerales hieráticos. Se observa que la notación hierática emplea un sistema numérico diferente, utilizando signos para los números del 1 al 9, para decenas (múltiplos de diez, del 10 al 90), centenas (del 100 al 900) y millares (del mil al nueve mil). Un número grande, como 9999, se podría escribir empleando este sistema con sólo cuatro signos, combinando los signos de 9000, 900, 90 y 9, en vez de usar los 36 jeroglíficos. Esta diferencia es más aparente que real ya que estos "signos individuales" eran realmente simples ligaduras En los más antiguos textos hieráticos los números individuales están escritos de forma clara, pero durante el Imperio Antiguo se desarrollaba una serie de escrituras para grupos de signos que contuvieran más de un numeral. Como la escritura hierática seguía desarrollándose con el tiempo, estos grupos de signos se simplificaron para agilizar la escritura, hasta llegar a la escritura demótica. De cualquier forma, es incorrecto hablar de estas ligaduras como un sistema numérico distinto, como sería también incorrecto hablar de un diferente alfabeto comparando textos jeroglíficos con ligaduras hieráticas, ya que estos "signos individuales" eran realmente simples ligaduras. Desde el tercer milenio a. C. los egipcios usaron un sistema de escribir los números en base diez utilizando los jeroglíficos de la figura para representar los distintos órdenes de unidades. Se usaban tantos de cada uno cómo fuera necesario y se podían escribir indistintamente de izquierda a derecha, al revés o de arriba abajo, cambiando la orientación de las figuras según el caso. Al ser indiferente el orden se escribían a veces según criterios estéticos, y solían ir acompañados de los jeroglíficos correspondientes al tipo de objeto (animales, prisioneros, vasijas etc.) cuyo número indicaban. Estos signos fueron utilizados hasta la incorporación de Egipto al imperio romano. Pero su uso quedó reservado a las inscripciones monumentales, en el uso diario fue sustituido por la escritura hierática y demótica, formas más simples que permitían mayor rapidez y comodidad a los escribas Dos de los más conocidos papiros en escritura hierática son el Papiro matemático de Moscú y el Papiro Rhind
[editar] Operaciones matemáticas Operaciones elementales con números egipcios
[editar] Sumas y restas Para puntear los signos más (+) y menos (-) se usaban los jeroglíficos: o Si los pies estaban orientados en dirección de la escritura significaba suma,
al contrario resta.
[editar] Fracciones Artículo principal: Fracción egipcia
Los números racionales también podían ser expresados, pero sólo como sumas de fracciones unitarias, con la unidad por numerador, excepto para 2/3 y 3/4. El indicativo de fracción es representado por el jeroglífico de la boca (R), y significa "parte":
Las fracciones se escribían con este operador, p.e. el numerador 1, y el denominador positivo debajo. Así, 1/3 se escribía:
Había signos especiales para 1/2, para 2/3 (de uso frecuente) y 3/4 (de uso menos frecuente):
es mentira
Si el "denominador" era muy grande y el signo de la "boca" no cabía encima, esta se situaba justo encima del comienzo del "denominador". Aparte de 2/3 y 3/4 los egipcios no conocían fracciones con numerador distinto a uno. Por ejemplo, la fracción 3/5 se representaba como 1/2 + 1/10 y similar a este ejemplo se descomponían todas las fracciones como suma de fracciones con la unidad como numerador.
NUMERACION MAYA
Los mayas utilizaban un sistema de numeración vigesimal (de base 20) de raíz mixta, similar al de otras civilizaciones mesoamericanas. Los mayas preclásicos desarrollaron independientemente el concepto de cero alrededor del año 36 a. C.[1] Este es el primer uso documentado del cero en América, aunque con algunas peculiaridades que le privaron de posibilidad operatoria.[2] Las inscripciones, los muestran en ocasiones trabajando con sumas de hasta cientos de millones y fechas tan extensas que tomaba varias líneas el poder representarlas
Numeración maya Los mayas idearon un sistema de numeración como un instrumento para medir el tiempo y no para hacer cálculos matemáticos. Por eso, los números mayas tienen que ver con los días, meses y años, y con la manera en que organizaban el calendario. Los mayas tenía tres modalidades para representar gráficamente los números, del 1 al 19, así como del cero: un sistema numérico de puntos y rayas; una numeración cefalomorfa «variantes de cabeza»; y una numeración antropomorfa, mediante figuras completas.[3]
[editar] El sistema numérico de puntos y rayas En el sistema de numeración maya las cantidades son agrupadas de 20 en 20; por esa razón en cada nivel puede ponerse cualquier número del 0 al 19. Al llegar al veinte hay que poner un punto en el siguiente nivel; de este modo, en el primer nivel se escriben las unidades, en el segundo nivel se tienen los grupos de 20 (veintenas), en el tercer nivel se tiene los grupos de 20×20 y en el cuarto nivel se tienen los grupos de 20×20×20.
Numeración maya.
Los tres símbolos básicos son el punto, cuyo valor es 1; la raya, cuyo valor es 5; y el caracol (algunos autores lo describen como concha o semilla), cuyo valor es 0. El sistema de numeración maya, aún siendo vigesimal, tiene el 5 como base auxiliar. La unidad se representa por un punto. Dos, tres, y cuatro puntos sirven para 2, 3 y 4. El 5 era una raya horizontal, a la que se añaden los puntos necesarios para representar 6, 7, 8 y 9. Para el 10 se usaban dos rayas, y de la misma forma se continúa hasta el 19 (con tres rayas y cuatro puntos) que es el máximo valor que se puede representar en cada nivel del sistema vigesimal. Este sistema de numeración es aditivo, porque se suman los valores de los símbolos para conocer un número. El punto no se repite más de 4 veces. Si se necesitan 5 puntos, entonces se sustituyen por una raya. La raya no aparece más de 3 veces. Si se necesitan 4 rayas, entonces quiere decir que se quiere escribir un número igual o mayor que 20 necesitándose así emplear otro nivel de mayor orden. Para escribir un número más grande que veinte se usan los mismos símbolos, pero cambian su valor dependiendo de la posición en la que se pongan. Los números mayas se escriben de abajo hacia arriba. En el primer orden (el de abajo) se escriben las unidades (del 0 al 19), en el segundo se representan grupos de 20 elementos. Por esto se dice que el sistema de numeración maya es vigesimal. En el segundo orden cada punto vale 20 unidades y cada raya vale 100 unidades. Por lo tanto, el 9 del segundo orden vale 9×20=180. Esas 180 unidades se suman con las 6 del primer orden y se obtiene el número 186.
Niv Multiplica Ejempl Ejempl Ejempl el dor oA oB oC
3º
× 400
2º
× 20
1º
×1
El tercer orden tendría que estar 32 429 5125 formado por grupos de 20 unidades (20×20×1); o sea, cada punto tendría que valer 400 unidades. Sin embargo, el sistema de numeración maya tiene una irregularidad: los símbolos que se escriben en este orden valen 18×20×1 para el sistema calendárico.[4] [5] Esto quiere decir que cada punto vale 360 unidades. Esta irregularidad tiene que ver con que los años mayas (tunes) están formados por 360 días, el múltiplo de 20 más cercano a 365. Por lo que el punto en el tercer nivel vale 360 únicamente en el cómputo de fechas y 400 en los demás casos.[6] Los mayas vinculaban los números del primer orden con los días (kines, en maya k'ino'ob), los del segundo orden con los meses (uinales, en maya uinalo'ob) y los del tercer orden con los años (tunes, en maya tuno'ob). En el primer número, el valor de la raya del tercer orden
es 1800 (5×360), el valor del 9 del segundo orden es 180 (9×20) y el valor del 8 del primer orden es 8 (8×1); por lo tanto, el número es 1.988. El sistema de numeración maya tiene 4 niveles, que se utilizaban para escribir grandes cantidades.
[editar] Cero Artículo principal: Cero
Símbolo maya para el cero, año 36 a. C. Es el primer uso documentado del cero en Ámerica.
La civilización maya fue la primera de América en idear el cero. Este era necesario para su numeración porque los mayas tenían un sistema posicional, es decir, un sistema de numeración en el que cada símbolo tiene un valor diferente según la posición que ocupa. El símbolo del cero es representado por un caracol (concha o semilla), una media cruz de Malta, una mano bajo una espiral o una cara cubierta por una mano.[7] Por ejemplo, para saber qué número es éste hay que obtener el valor de los símbolos. El cero indica que no hay unidades. Los dos puntos del segundo orden representan 2 grupos de 20 unidades; o sea, 40. El número del tercer orden es un 8, pero su valor real se obtiene al multiplicarlo por 360. Por lo tanto, el número es 2880+40+0= 2920. Es más fácil leer un número cuando se representa con puntos, rayas y conchas, porque es una representación sencilla que no deja lugar a dudas del valor de cada símbolo, de acuerdo con la posición en la que se escribe. En las representaciones antropomorfas, es más complejo entender el número escrito.
[editar] Numeración astronómica El año lo consideraban dividido en 18 unidades; cada una constaba de 20 días. Se añadían algunos festivos (uayeb) y de esta forma se conseguía que durara justo lo que una de las unidades de tercer orden del sistema numérico. Además de este calendario solar usaron otro de carácter religioso en el que cada año se divide en 20 ciclos de 13 días. Al romperse la unidad del sistema, éste se hace poco práctico para el cálculo. Y, aunque los conocimientos astronómicos y de otro tipo fueron notables, los mayas no desarrollaron una matemática astronómica más allá del calendario. Fue así como ellos empezaron a crear su simbolizacion a esto se le llama sistema de numeracion maya.
[editar] Numeración comercial
Al tener cada cifra un valor relativo según el lugar que ocupa, la presencia de un signo para el cero con el que indicar la ausencia de unidades de algún orden se hace imprescindible. Los mayas lo usaron, aunque no parece haberles interesado el concepto de cantidad nula. Como los babilonios, lo usaron simplemente para indicar la ausencia de otro número. Pero los científicos mayas eran a la vez sacerdotes ocupados en la observación astronómica, y para expresar los números correspondientes a las fechas usaron unas unidades de tercer orden irregulares para la base 20. Así, la cifra que ocupaba el tercer lugar desde abajo se multiplicaba por 20×18=360, para completar una cifra muy próxima a la duración de un año. Su numeración limita en el número 50. Este es una variante del sistema convencional maya.
Numeración babilónica De Wikipedia, la enciclopedia libre Saltar a: navegación, búsqueda
Los babilonios empleaban un sistema sexagesimal posicional adaptado tras tomar el de los sumerios y también de la civilización de Acadia. Los números babilónicos se escribían en cuneiforme, usando una aguja de lámina inclinada para acuñar marcas en unas tablas de arcilla suave que luego se exponían al sol para endurecerlas y que quedasen grabadas permanentemente.
Este sistema apareció por primera vez alrededor de 1800-1900 a. C. También se acredita como el primer sistema de numeración posicional, es decir, en el cual el valor de un dígito particular depende tanto de su valor como de su posición en el número que se quiere representar. Esto era un avance extremadamente importante, porque, antes del sistema lugar-valor los técnicos estaban obligados a utilizar símbolos únicos para representar cada potencia de una base (diez, cien, mil, y así sucesivamente), llegando a ser incluso los cálculos más básicos poco manejables. Aunque su sistema tenía claramente un sistema decimal interno prefirieron utilizar 60 como la segunda unidad más pequeña en vez de 100 como lo hacemos hoy, más apropiadamente se considera un sistema mixto de las bases 10 y 60. Un valor grande al tener como base sesenta es el número da como resultado un guarismo más pequeño y que además se puede dividir sin resto por dos, tres, cuatro, cinco, y seis, por lo tanto también diez, quince, veinte, y treinta. Solamente dos símbolos usados en una variedad de combinaciones eran utilizados para denotar los 59 números. Un espacio fue dejado para indicar un cero (siglo III a. C.), aunque idearon más adelante una muestra de representar un lugar vacío. La teoría más comúnmente adoptada es que el 60, un número compuesto de muchos factores (los números anterior y siguiente de la serie serían el 12 y el 120), fue elegido
como base debido a su factorización 2×2×3×5, que lo hace divisible por 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, y 30. De hecho, es el entero más pequeño divisible por todos los enteros del 1 al 6. Enteros y fracciones eran representados de la misma forma: el punto separador de enteros y fracciones no era escrito, sino que quedaba aclarado por el contexto. Por ejemplo, el número 53 en numeración babilónica se representaba utilizando cinco veces el símbolo correspondiente a 10, y 3 veces el símbolo correspondiente a 1, como se puede ver en la imagen superior.