4-1 BOUNDARY WORK FOR POLYTROPIC PROCESS OF GASES
P
closed system, m=const
n,C are constants
n PV 1 1 = C
1
ln P
PV n = C P=
C Vn
ln P = −n ⋅ lnV + C
P2V2n = C
2
n 1 1
n 2 2
PV = P V
n=0
⇒
P = const isobaric
n=1
⇒
T = const isothermal ideal gas
n=k
⇒
s = const
isentropic
n=∞
⇒
v = const
isochoric
lnV
W V
V2
V1
PV n = C polytropic process
n≠1
W
2
2
1
1
= ∫ PdV = C ∫ V − n dV 1 = ( CV21− n − CV11− n ) 1− n
W
=
PV = mRT
C = P1V 1n = P2V 2n
P2V2 − PV 1 1 1− n
ideal gas
PV PV 1 1 = 2 2 T1 T2
⇐
P T2 = 2 T1 P1
1−
1 n
( 4.9 )
V = 1 V2
n −1
PV 1 1 = mRT1 mR (T2 − T1 ) 1− n
P2V2 = mRT2
W
=
PV = C process
W
=∫
W
= PV 1 1 ln
( 4.10 )
2
n=1
P PV 1 1 = C 1
P=
C V
V C dV = C ln 2 V V1 1 V2 V1
= P2V2 ln
V2 V1
= PV 2 2 ln
P1 P2
For ideal gas: PV = mRT = C ⇒ T = const
( 4.7 ) (isothermal process)
2 P2V2 = C
W
W
V
V1
n=0
= mRT ln
V2 V1
= mRT ln
P1 P2
PV 1 1 = P2V2
V2
P=C
isobaric process
(constant pressure process)
P
1
W
2 P = const W V
V1
V2
= P ⋅ (V2 − V1 ) = P ⋅ m ⋅ ( v2 − v1 )
( 4.6 )