Geo. Axis Eq leg, vert leg up
Flexural Design of Single Angles per AISC Specification 13th Edition Shape b t Sx Ix
L3X3X1/4 3 0.25 0.569 1.23
Fy Span length, L Cb
inch inch inch^3 inch^4
Geometric Axis Bending Equal Leg Angles Only 1 Vertical Leg Up No Lateral-Torsional Restraint
36 ksi 2 feet 1 per Table 3-1, AISC Manual, 1.5 max
F10.2
Lateral Torsional Buckling
F10.2(i)(a)
Me
F10.3 b/t
Assume no lateral torsional restraint
107.97 inch. kips Eqn (F10-4a)
0.8My
16.39 inch. kips
Mn
24.0 inch. kips
Leg Local Buckling, 12.0
.54 limit, Compact
Tip in Compression
15.3 Compact, Leg Local Buckling does not apply.
.91 limit, Non-Compact
25.8 Mn ------
inch. kips
Mn ------
inch. kips
Mn ------
in. kips
> .91 limit, Slender
Flexural Capacity Mn LRFD, ΦMn ASD, Mn/Ω
24.0 21.6 inch. kips 14.4 inch. Kips
Maximum Uniformly Distributed Vertical Load Assume a simply ed beam. The moment above would be produced by a uniformly distibuted vertical load of: LRFD 3.60 kips/foot. factored ASD 2.39 kips/foot. service Deflection based on Maximum Uniformly Distributed Vertical Load 2
Vertical Horizontal
ASD 0.04 inches 0.02 inches
LRFD 0.04 inches 0.02 inches
Deflection Calculator3 Enter a uniform load, kips/foot 0.55 Total Length, feet 4 Vertical Deflection Lateral Deflection
0.14 inches 0.08 inches
1. Assume simply ed, uniformly distributed vertical load acting down. Vertical leg in bending compression. 2. For LRFD, assume that factored load is all dead load. Factored load divided by 1.4. 3. Note that deflection using geometric axis moment of inertia has been multiplied by 1.56 for vertical deflection and the lateral deflection is .94 x the vertical deflection (using the geometric axis moment of inertia).
Page 1 of 31
Geo. Axis Eq leg, vert leg down
Flexural Design of Single Angles per AISC Specification 13th Edition Shape b t Sx Ix
L4X4X3/8 4 0.375 1.5 4.32
Fy Span length, L Cb
inch inch inch^3 inch^4
Geometric Axis Bending Equal Leg Angles Only 1 Vertical Leg Down No Lateral-Torsional Restraint
36 ksi 2 feet 1 per Table 3-1, AISC Manual, 1.5 max
F10.2
Lateral Torsional Buckling
F10.2(i)(b)
Me
F10.3 b/t
Assume no lateral torsional restraint
6751.96 inch. kips Eqn (F10-4b)
0.8My
43.20 inch. kips
Mn
64.80 inch. kips
Leg Local Buckling, 10.7
.54 limit, Compact
Tip in Compression
15.3 Compact, Leg Local Buckling does not apply.
.91 limit, Non-Compact
25.8 Mn ------
inch. kips
Mn ------
inch. kips
Mn ------
in. kips
> .91 limit, Slender
Flexural Capacity Mn LRFD, ΦMn ASD, Mn/Ω
64.8 58.3 inch. kips 38.8 inch. Kips
Maximum Uniformly Distributed Vertical Load Assume a simply ed beam. The moment above would be produced by a uniformly distibuted vertical load of: LRFD 9.72 kips/foot. factored ASD 6.47 kips/foot. service Deflection based on Maximum Uniformly Distributed Vertical Load 2
Vertical Horizontal
ASD 0.03 inches 0.02 inches
LRFD 0.03 inches 0.02 inches
Deflection Calculator3 Enter a uniform load, kips/foot 0.40 Total Length, feet 6 Vertical Deflection Lateral Deflection
0.15 inches 0.09 inches
1. Assume simply ed, uniformly distributed vertical load acting down. Vertical leg in bending compression. 2. For LRFD, assume that factored load is all dead load. Factored load divided by 1.4. 3. Note that deflection using geometric axis moment of inertia has been multiplied by 1.56 for vertical deflection and the lateral deflection is .94 x the vertical deflection (using the geometric axis moment of inertia).
Page 2
Prin. Axis Eq. leg, vert leg up
Flexural Design of Single Angles per AISC Specification 13th Edition Shape b t Sw, major axis Sz tip, minor axis Sz heel, minor axis Iw, major axis Iz, minor axis
Principal Axis Bending Equal Leg Angles Only Vertical Leg Up, No Lateral-Torsional Restraint
L4X4X1/4 4 0.25 1.70 0.80 0.77 4.82 1.18
Fy Span length, L Cb
inch inch inch^3 inch^3 inch^3 inch^4 inch^4
Section modulus to tip in compression for major axis bending Section modulus to leg tips in compression for minor axis bending Section modulus to heel for minor axis bending
36 ksi 16 feet 1 ≤ 1.5, per Table 3-1, 13th Ed. AISC Manual
Major Axis Bending F10.2(iii) Lateral Torsional Buckling Assume no lateral torsional restraint Me 69.5 inch. kips Eqn (F10-5)
F10.3
My
61.307069 inch kips
Mn
50.3 inch kips
Leg Local Buckling b/t b/t Limits: Compact
Tip in Compression 16
15.33 ------
Noncompact
25.83 Mn
89.5 inch kips
Slender Mn
Mn -----89.5 inch kips
inch kips
Major Axis Flexural Capacity Mnw 50.3 inch kips LRFD, ΦMnw 45.3 inch kips ASD, Mnw/Ω 30.1 inch kips
Page 3 of 31
Prin. Axis Eq. leg, vert leg up
Minor Axis Bending F10.1 Yielding My Mn F10.3
Leg Local Buckling b/t b/t Limits: Compact Noncompact
27.9 inch. kips 41.8 inch. kips Tip in Compression 16
15.33 Mn -----inch kips 25.83 Mn 42.1 inch kips
Slender Mn -----42.1 inch kips MInor Axis Flexural Capacity Mnz 41.8 in. kips LRFD, ΦMnz 37.7 inch kips ASD, Mnz/Ω 25.1 inch kips
inch kips
Mn
Maximum Factored Uniformly Distributed Vertical Load Use interaction equation (H1-1b) to determine the maximum uniformly distributed vertical load that can be resisted by this section for the span length shown. Maximum Uniformly Distributed Vertical Load LRFD 0.08 kips/foot Factored Load ASD 0.05 kips/foot Service Load Deflection Based on Maximum Uniformly Distributed Vertical Load Major Axis Bending Vertical Horizontal Minor Axis Bending Vertical Horizontal
1,2
ASD 0.266 inches 0.266 inches
LRFD 0.285 inches 0.285 inches
1.082 inches 1.082 inches
1.162 inches 1.162 inches
Combined Deflection Vertical 1.348 inches 1.448 inches Horizontal 0.817 inches 0.877 inches 1. For LRFD, assume that factored load is all dead load. Factored load divided by 1.4. 2. LRFD deflection differs from ASD due to factors 0.9/1.4=0.643 for LRFD, 1/1.67=0.599 for ASD.
Page 4 of 31
Prin. Axis Eq leg vert leg down
Flexural Design of Single Angles per AISC Specification 13th Edition Shape b t Sw, major axis Sz tip, minor axis Sz heel, minor axis Iw, major axis Iz, minor axis
Principal Axis Bending Equal Leg Angles Only Vertical Leg Down, No Lateral-Torsional Restraint
L4X4X1/4 4 0.25 1.70 0.80 0.77 4.82 1.18
Fy Span length, L Cb
inch inch inch^3 inch^3 inch^3 inch^4 inch^4
Section modulus to tip in compression for major axis bending Section modulus to leg tips in compression for minor axis bending Section modulus to heel in compression for minor axis bending
36 ksi 16 feet 1 ≤ 1.5, per Table 3-1, 13th Ed. AISC Manual
Major Axis Bending F10.2(iii) Lateral Torsional Buckling Assume no lateral torsional restraint Me 69.5 inch. kips Eqn (F10-5)
F10.3
My
61.307069 inch kips
Mn
50.3 inch kips
Leg Local Buckling b/t b/t Limits: Compact
Tip in Compression 16
15.33 ------
Noncompact
25.83 Mn
89.5 inch kips
Slender Mn
Mn -----89.5 inch kips
inch kips
Major Axis Flexural Capacity Mnw 50.3 inch kips LRFD, ΦMnw 45.3 inch kips ASD, Mnw/Ω 30.1 inch kips
Page 5 of 31
Prin. Axis Eq leg vert leg down
Minor Axis Bending F10.1 Yielding My Mn
27.9 inch. kips 41.8 inch. kips
MInor Axis Flexural Capacity Mnz 41.8 in. kips LRFD, ΦMnz 37.7 inch kips ASD, Mnz/Ω 25.1 inch kips Maximum Factored Uniformly Distributed Vertical Load Use interaction equation (H1-1b) to determine the maximum uniformly distributed vertical load that can be resisted by this section for the span length shown. Maximum Uniformly Distributed Vertical Load LRFD 0.08 kips/foot Factored Load ASD 0.05 kips/foot Service Load Deflection Based on Maximum Uniformly Distributed Vertical Load1,2 Major Axis Bending Vertical Horizontal Minor Axis Bending Vertical Horizontal
ASD 0.266 inches 0.266 inches
LRFD 0.285 inches 0.285 inches
1.082 inches 1.082 inches
1.162 inches 1.162 inches
Combined Deflection Vertical 1.348 inches 1.448 inches Horizontal 0.817 inches 0.877 inches 1. For LRFD, assume that factored load is all dead load. Factored load divided by 1.4. 2. LRFD deflection differs from ASD due to factors 0.9/1.4=0.643 for LRFD, 1/1.67=0.599 for ASD.
Page 6 of 31
Prin. Axis UnEq Leg Long Leg Up
Flexural Design of Single Angles per AISC Specification 13th Edition Shape Long Leg Short Leg t Sw long tip, major axis Sz long leg tip, minor axis Sz short leg tip, minor axis Iw, major axis Iz, minor axis rz, minor axis tan a
Principal Axis Bending UnEqual Leg Angles Only Long Leg Up
L6X4X1/2 6 4 0.5 4.90 3.00 1.64 19.97 3.55 0.86 0.44 3.14
βw
Fy Span length Cb
inch inch inch inch^3 inch^3 inch^3 inch^4 inch^4 inch
Section modulus to long leg tip for bending about major axis Section modulus to long leg tip for bending about minor axis Section modulus to short leg tip for bending about minor axis
Angle between vertical and minor axis. Positive value from Table C-F10.1in AISC Specification Commentary.
inch
36 ksi 11.8 feet 1 ≤ 1.5, per Table 3-1, 13th Ed. AISC Manual
Major Axis Bending F10.2
F10.3
Lateral Torsional Buckling Me 397.3 inch. kips My
176.5 inch. kips
Mn
201.2 inch. kips
Leg Local Buckling b/t 12.0 b/t Limits: Compact
Assume no lateral torsional restraint Eqn (F10-6)
Long Leg
15.33 Mn Compact, Leg Local Buckling does not apply 25.83 Mn ------inch. kips
Noncompact Slender Mn
N/A
Mn -----inch. kips
Major Axis Flexural Capacity Mnw 201.2 inch kips LRFD, ΦMnw 181.1 inch kips ASD, Mnw/Ω 120.5 inch kips
Page 7 of 31
inch. kips
Prin. Axis UnEq Leg Long Leg Up
Minor Axis Bending F10.1
Yielding My 58.95759 inch. kips Mn 88.43639 inch. kips
Minor Axis Bending F10.3
Leg Local Buckling Long Leg b/t b/t Limits: Compact Noncompact
Tips in Compression 12
15.33 Mn Compact, Leg Local inch. Buckling kips Long does not Legapply Flexural Capacity 25.83 Mn N/A inch. kips Mn ------inch. kips
Slender Mn ------
inch. kips
Minor Axis Bending, continued F10.3 Leg Local Buckling Tips in Compression Short Leg b/t 8.00 b/t Limits: Compact Noncompact
15.33 Mn Compact, Leg Local Buckling does not apply 25.83 Short Leg Flexural Capacity Mn ------inch. kips Mn Compact inch. kips
Slender Mn -----MInor Axis Flexural Capacity Mnz 88.4 in. kips LRFD, ΦMnz 79.6 inch kips ASD, Mnz/Ω 53.0 inch kips
Page 8 of 31
inch. kips
Prin. Axis UnEq Leg Long Leg Up
Maximum Equivalent Moment About the Horizontal Axis Use interaction equation (H1-1b) to determine the maximum moment about the horizontal axis that can be resisted by this section for the span length shown. Maximum Equivalent Moment About the Horizontal Axis Mn 109.8 inch kips LRFD, ΦMn 98.8 inch kips ASD, Mn/Ω 65.7 inch kips Maximum Uniformly Distributed Vertical Load Convert the Maxiumum Equivalent Moment above to the maximum uniformly distributed vertical load that can be resisted by this section for the span length shown. Maximum Uniformly Distributed Vertical Load 0.526 kips/foot LRFD 0.47 kips/foot ASD 0.31 kips/foot Deflection Based on Maximum Uniformly Distributed Vertical Load1, 2, 3 ASD Major Axis Bending 0.217 inches Vertical 0.198 inches down Horizontal 0.088 inches right Minor Axis Bending 0.539 inches Vertical 0.217 inches down Horizontal 0.493 inches left
LRFD 0.233 inches 0.213 inches down 0.094 inches right 0.578 inches 0.233 inches down 0.529 inches left
Combined Deflection ASD LRFD Vertical 0.416 inches down 0.446 inches down Horizontal 0.405 inches left 0.435 inches left 1. For LRFD, assume that factored load is all dead load. Factored load divided by 1.4. 2. LRFD deflection differs from ASD due to factors 0.9/1.4=0.643 for LRFD, 1/1.67=0.599 for ASD. 3. Deflection left or right is based on the vertical leg on the left with the horizontal leg pointing to the right.
Page 9 of 31
Prin Axis UnEq Leg Long Leg Dwn
Flexural Design of Single Angles per AISC Specification 13th Edition Shape Long Leg Short Leg t Sw long tip, major axis Sw short tip, major axis Sz long leg tip, minor axis Sz short leg tip, minor axis Iw, major axis Iz, minor axis rz, minor axis tan a
Principal Axis Bending UnEqual Leg Angles Only Long Leg Down
L6X4X5/16 6 4 0.3125 3.21 4.41 2.04 1.07 13.22 2.31 0.87 0.45 3.14
βw Fy Span length Cb
inch inch inch inch^3 inch^3 inch^3 inch^3 inch^4 inch^4 inch
Section modulus to long leg tip for bending about major axis Section modulus to short leg tip about major axis Section modulus to long leg tip for bending about minor axis Section modulus to short leg tip for bending about minor axis
Angle between vertical and minor axis.
inch
Positive value from Table C-F10.1in AISC Specification Commentary.
36 ksi 10 feet 1 ≤ 1.5, per Table 3-1, 13th Ed. AISC Manual
Major Axis Bending F10.2
F10.3
Lateral Torsional Buckling Me 27.7 inch. kips My
115.7 inch. kips
Mn
24.3 inch. kips
Leg Local Buckling b/t
Assume no lateral torsional restraint Eqn (F10-6)
Short Leg 12.80
b/t Limits: Compact
15.33 Mn Compact, Leg Local Buckling does not apply 25.83 Mn ------inch. kips
Noncompact Slender Mn
N/A
Mn -----inch. kips
Major Axis Flexural Capacity Mnw 24.3 inch kips LRFD, ΦMnw 21.9 inch kips ASD, Mnw/Ω 14.6 inch kips
Page 10 of 31
inch. kips
Prin Axis UnEq Leg Long Leg Dwn
Minor Axis Bending F10.1
Yielding
Tips in Tension My 475.7564 inch. kips
Mn 713.6346 MInor Axis Flexural Capacity Mnz 713.6 LRFD, ΦMnz 642.3 ASD, Mnz/Ω 427.3
inch. kips in. kips inch kips inch kips
Maximum Equivalent Moment About the Horizontal Axis Use interaction equation (H1-1b) to determine the maximum moment about the horizontal axis that can be resisted by this section for the span length shown. Maximum Equivalent Moment About the Horizontal Axis Mn 26.3 inch kips LRFD, ΦMn 23.6 inch kips ASD, Mn/Ω 15.7 inch kips Maximum Uniformly Distributed Vertical Load Convert the Maxiumum Equivalent Moment above to the maximum uniformly distributed vertical load that can be resisted by this section for the span length shown. Maximum Uniformly Distributed Vertical Load 0.175 kips/foot LRFD 0.16 kips/foot ASD 0.10 kips/foot Deflection Based on Maximum Uniformly Distributed Vertical Load Major Axis Bending Vertical Horizontal Minor Axis Bending Vertical Horizontal
1, 2, 3
ASD 0.321 inches 0.293 inches down 0.131 inches left 0.381 inches 0.156 inches down 0.348 inches right
Combined Deflection
LRFD 0.344 inches 0.314 inches down 0.141 inches left 0.409 inches 0.168 inches down 0.374 inches right
ASD LRFD Vertical 0.449 inches down 0.482 inches down Horizontal 0.217 inches right 0.232 inches right 1. For LRFD, assume that factored load is all dead load. Factored load divided by 1.4. 2. LRFD deflection differs from ASD due to factors 0.9/1.4=0.643 for LRFD, 1/1.67=0.599 for ASD. 3. Deflection left or right is based on the vertical leg on the left with the horizontal leg pointing to the right.
Page 11 of 31
Prin Axis UnEq Leg Short Leg Up
Flexural Design of Single Angles per AISC Specification 13th Edition Shape Long Leg Short Leg t Sw long tip, major axis Sw short tip, major axis Sz long leg tip, minor axis Sz short leg tip, minor axis Iw, major axis Iz, minor axis rz, minor axis tan a
Principal Axis Bending UnEqual Leg Angles Only Short Leg Up
L5X3-1/2X1/2 5 3.5 0.5 3.44 4.49 2.07 1.22 11.73 2.25 0.75 0.48 2.40
βw Fy Span length Cb
inch inch inch inch^3 inch^3 inch^3 inch^3 inch^4 inch^4 inch
Section modulus to long leg tip for bending about major axis Section modulus to short leg tip about major axis Section modulus to long leg tip for bending about minor axis Section modulus to short leg tip for bending about minor axis
Angle between vertical and minor axis.
inch
Positive value from Table C-F10.1in AISC Specification Commentary.
36 ksi 4 feet 1.14 ≤ 1.5, per Table 3-1, 13th Ed. AISC Manual
Major Axis Bending F10.2
F10.3
Lateral Torsional Buckling Assume no lateral torsional restraint Me 1594.89 inch. kips Eqn (F10-6) My
123.8173 inch. kips
Mn
185.73 inch. kips
Leg Local Buckling b/t
Short Leg 7.00
b/t Limits: Compact
15.33 Mn Compact, Leg Local Buckling does not apply 25.83 Mn ------inch. kips
Noncompact Slender Mn
N/A
Mn -----in. kips
inch. kips
Major Axis Flexural Capacity Mnw 185.7 inch kips LRFD, ΦMnw 167.2 inch kips ASD, Mnw/Ω 111.2 inch kips Minor Axis Bending F10.1
Yielding My 43.85076 inch. kips Mn 65.77614 inch. kips
Minor Axis Bending F10.3
Local Buckling Long Leg
Tips in Compression b/t
b/t Limits: Compact Noncompact
10
15.33 Mn Compact, Leg Local BucklingLong doesLeg not apply Flexural Capacity 25.83 Mn N/A inch. kips Mn ------inch. kips
Slender Mn ------
inch. kips
Page 12 of 31
Prin Axis UnEq Leg Short Leg Up
Minor Axis Bending, continued F10.3 Short Leg b/t b/t Limits: Compact Noncompact
7.00
15.33 Mn Compact, Leg Local Buckling does not apply 25.83 Short Leg Flexural Capacity Mn ------inch. kips Mn Compact inch. kips
Slender Mn ------
inch. kips
MInor Axis Flexural Capacity Mnz 65.8 in. kips LRFD, ΦMnz 59.2 inch kips ASD, Mnz/Ω 39.4 inch kips Maximum Equivalent Moment About the Horizontal Axis Use interaction equation (H1-1b) to determine the maximum moment about the horizontal axis that can be resisted by this section for the span length shown. Maximum Equivalent Moment About the Horizontal Axis Mn 62.4 inch kips LRFD, ΦMn 56.1 inch kips ASD, Mn/Ω 37.3 inch kips Maximum Uniformly Distributed Vertical Load Convert the Maxiumum Equivalent Moment above to the maximum uniformly distributed vertical load that can be resisted by this section for the span length shown. Maximum Uniformly Distributed Vertical Load 2.598 kips/foot LRFD 2.34 kips/foot ASD 1.56 kips/foot Deflection Based on Maximum Uniformly Distributed Vertical Load Major Axis Bending Vertical Horizontal Minor Axis Bending Vertical Horizontal
1, 2, 3
0.011 0.005 0.010 0.124 0.112 0.054
ASD inches inches down inches left inches inches down inches right
LRFD 0.012 inches 0.005 inches down 0.011 inches left 0.133 inches 0.120 inches down 0.057 inches right
Combined Deflection ASD LRFD Vertical 0.117 inches down 0.125 inches down Horizontal 0.043 inches right 0.046 inches right 1. For LRFD, assume that factored load is all dead load. Factored load divided by 1.4. 2. LRFD deflection differs from ASD due to factors 0.9/1.4=0.643 for LRFD, 1/1.67=0.599 for ASD.
Page 13 of 31
Prin Axis UnEq L Short Leg Down
Flexural Design of Single Angles per AISC Specification 13th Edition Shape Long Leg Short Leg t Sw long tip, major axis Sw short tip, major axis Sz long leg tip, minor axis Sz short leg tip, minor axis Iw, major axis Iz, minor axis rz, minor axis tan a
Principal Axis Bending UnEqual Leg Angles Only Short Leg Down
L5X3-1/2X1/2 5 3.5 0.5 3.44 4.49 2.07 1.22 11.73 2.25 0.75 0.48 2.40
βw Fy Span length Cb
inch inch inch inch^3 inch^3 inch^3 inch^3 inch^4 inch^4 inch
Section modulus to long leg tip for bending about major axis Section modulus to short leg tip about major axis Section modulus to long leg tip for bending about minor axis Section modulus to short leg tip for bending about minor axis
Angle between vertical and minor axis. Positive value from Table C-F10.1in AISC Specification Commentary.
inch
36 ksi 8 feet 1.14 ≤ 1.5, per Table 3-1, 13th Ed. AISC Manual
Major Axis Bending F10.2
F10.3
Lateral Torsional Buckling Assume no lateral torsional restraint Me 490.03 inch. kips Eqn (F10-6) My
123.8173 inch. kips
Mn
164.91 inch. kips
Leg Local Buckling b/t
Long Leg 10.0
b/t Limits: Compact
15.33 Mn Compact, Leg Local Buckling does not apply 25.83 Mn ------inch. kips
Noncompact Slender Mn
N/A
Mn -----in. kips
inch. kips
Major Axis Flexural Capacity Mnw 164.9 inch kips LRFD, ΦMnw 148.4 inch kips ASD, Mnw/Ω 98.7 inch kips Minor Axis Bending F10.1
Yielding My 43.85076 inch. kips Mn 65.77614 inch. kips MInor Axis Flexural Capacity Mnz 65.8 in. kips LRFD, ΦMnz 59.2 inch kips ASD, Mnz/Ω 39.4 inch kips
Page 14 of 31
Prin Axis UnEq L Short Leg Down
Maximum Equivalent Moment About the Horizontal Axis Use interaction equation (H1-1b) to determine the maximum moment about the horizontal axis that can be resisted by this section for the span length shown. Maximum Equivalent Moment About the Horizontal Axis Mn 61.2 inch kips LRFD, ΦMn 55.1 inch kips ASD, Mn/Ω 36.7 inch kips Maximum Uniformly Distributed Vertical Load Convert the Maxiumum Equivalent Moment above to the maximum uniformly distributed vertical load that can be resisted by this section for the span length shown. Maximum Uniformly Distributed Vertical Load 0.638 kips/foot LRFD 0.57 kips/foot ASD 0.38 kips/foot Deflection Based on Maximum Uniformly Distributed Vertical Load1, 2, 3 ASD Major Axis Bending 0.045 inches Vertical 0.019 inches down Horizontal 0.040 inches left Minor Axis Bending 0.487 inches Vertical 0.439 inches down Horizontal 0.210 inches right
LRFD 0.048 inches 0.021 inches down 0.043 inches left 0.522 inches 0.471 inches down 0.226 inches right
Combined Deflection ASD LRFD Vertical 0.458 inches down 0.492 inches down Horizontal 0.170 inches right 0.182 inches right 1. For LRFD, assume that factored load is all dead load. Factored load divided by 1.4. 2. LRFD deflection differs from ASD due to factors 0.9/1.4=0.643 for LRFD, 1/1.67=0.599 for ASD.
Page 15 of 31
Shape 1 L8X8X1-1/8 L8X8X1 L8X8X7/8 L8X8X3/4 L8X8X5/8 L8X8X9/16 L8X8X1/2 L6X6X1 L6X6X7/8 L6X6X3/4 L6X6X5/8 L6X6X9/16 L6X6X1/2 L6X6X7/16 L6X6X3/8 L6X6X5/16 L5X5X7/8 L5X5X3/4 L5X5X5/8 L5X5X1/2 L5X5X7/16 L5X5X3/8 L5X5X5/16 L4X4X3/4 L4X4X5/8 L4X4X1/2 L4X4X7/16 L4X4X3/8 L4X4X5/16 L4X4X1/4 L3-1/2X3-1/2X1/2 L3-1/2X3-1/2X7/16 L3-1/2X3-1/2X3/8 L3-1/2X3-1/2X5/16 L3-1/2X3-1/2X1/4 L3X3X1/2 L3X3X7/16 L3X3X3/8 L3X3X5/16 L3X3X1/4 L3X3X3/16 L2-1/2X2-1/2X1/2 L2-1/2X2-1/2X3/8 L2-1/2X2-1/2X5/16 L2-1/2X2-1/2X1/4 L2-1/2X2-1/2X3/16 L2X2X3/8 L2X2X5/16 L2X2X1/4 L2X2X3/16
Weight 2 57.2 51.3 45.3 39.2 33 29.8 26.7 37.5 33.2 28.8 24.3 22 19.6 17.3 14.9 12.5 27.3 23.7 20.1 16.3 14.4 12.4 10.4 18.5 15.7 12.7 11.2 9.72 8.16 6.58 11.1 9.82 8.51 7.16 5.79 9.35 8.28 7.17 6.04 4.89 3.7 7.65 5.9 4.98 4.04 3.06 4.65 3.94 3.21 2.46
Area 3 16.8 15.1 13.3 11.5 9.69 8.77 7.84 11 9.75 8.46 7.13 6.45 5.77 5.08 4.38 3.67 8.02 6.98 5.9 4.79 4.22 3.65 3.07 5.43 4.61 3.75 3.3 2.86 2.4 1.93 3.27 2.89 2.5 2.1 1.7 2.75 2.43 2.11 1.78 1.44 1.09 2.25 1.73 1.46 1.19 0.901 1.37 1.16 0.944 0.722
depth 4 8 8 8 8 8 8 8 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 4 4 4 4 4 4 4 3.5 3.5 3.5 3.5 3.5 3 3 3 3 3 3 2.5 2.5 2.5 2.5 2.5 2 2 2 2
b 5 8 8 8 8 8 8 8 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 4 4 4 4 4 4 4 3.5 3.5 3.5 3.5 3.5 3 3 3 3 3 3 2.5 2.5 2.5 2.5 2.5 2 2 2 2
t 6 1.125 1 0.875 0.75 0.625 0.5625 0.5 1 0.875 0.75 0.625 0.5625 0.5 0.4375 0.375 0.3125 0.875 0.75 0.625 0.5 0.4375 0.375 0.3125 0.75 0.625 0.5 0.4375 0.375 0.3125 0.25 0.5 0.4375 0.375 0.3125 0.25 0.5 0.4375 0.375 0.3125 0.25 0.1875 0.5 0.375 0.3125 0.25 0.1875 0.375 0.3125 0.25 0.1875
kdes 7 1.75 1.625 1.5 1.375 1.25 1.1875 1.125 1.5 1.375 1.25 1.125 1.0625 1 0.9375 0.875 0.8125 1.375 1.25 1.125 1 0.9375 0.875 0.8125 1.125 1 0.875 0.8125 0.75 0.6875 0.625 0.875 0.8125 0.75 0.6875 0.625 0.875 0.8125 0.75 0.6875 0.625 0.5625 0.75 0.625 0.5625 0.5 0.4375 0.625 0.5625 0.5 0.4375
x 8 2.4 2.36 2.31 2.26 2.21 2.19 2.17 1.86 1.81 1.77 1.72 1.7 1.67 1.65 1.62 1.6 1.56 1.52 1.47 1.42 1.4 1.37 1.35 1.27 1.22 1.18 1.15 1.13 1.11 1.08 1.05 1.03 1 0.979 0.954 0.929 0.907 0.884 0.86 0.836 0.812 0.803 0.758 0.735 0.711 0.687 0.632 0.609 0.586 0.561
L2X2X1/8
1.67
0.491
2
2
0.125
0.375
0.534
y 9 2.4 2.36 2.31 2.26 2.21 2.19 2.17 1.86 1.81 1.77 1.72 1.7 1.67 1.65 1.62 1.6 1.56 1.52 1.47 1.42 1.4 1.37 1.35 1.27 1.22 1.18 1.15 1.13 1.11 1.08 1.05 1.03 1 0.979 0.954 0.929 0.907 0.884 0.86 0.836 0.812 0.803 0.758 0.735 0.711 0.687 0.632 0.609 0.586 0.561
xp 10 1.05 0.943 0.832 0.72 0.606 0.548 0.49 0.918 0.813 0.705 0.594 0.538 0.481 0.423 0.365 0.306 0.802 0.698 0.59 0.479 0.422 0.365 0.307 0.679 0.576 0.468 0.413 0.357 0.3 0.242 0.466 0.412 0.357 0.301 0.243 0.458 0.405 0.351 0.296 0.239 0.181 0.45 0.347 0.293 0.237 0.18 0.342 0.29 0.236 0.18
yp 11 1.05 0.943 0.832 0.72 0.606 0.548 0.49 0.918 0.813 0.705 0.594 0.538 0.481 0.423 0.365 0.306 0.802 0.698 0.59 0.479 0.422 0.365 0.307 0.679 0.576 0.468 0.413 0.357 0.3 0.242 0.466 0.412 0.357 0.301 0.243 0.458 0.405 0.351 0.296 0.239 0.181 0.45 0.347 0.293 0.237 0.18 0.342 0.29 0.236 0.18
Ix 12 98.1 89.1 79.7 69.9 59.6 54.2 48.8 35.4 31.9 28.1 24.1 22 19.9 17.6 15.4 13 17.8 15.7 13.6 11.3 10 8.76 7.44 7.62 6.62 5.52 4.93 4.32 3.67 3 3.63 3.25 2.86 2.44 2 2.2 1.98 1.75 1.5 1.23 0.948 1.22 0.972 0.837 0.692 0.535 0.476 0.414 0.346 0.271
Zx 13 31.6 28.5 25.3 22 18.6 16.8 15.1 15.4 13.7 11.9 10.1 9.18 8.22 7.25 6.27 5.26 9.31 8.14 6.93 5.66 5 4.33 3.65 5.02 4.28 3.5 3.1 2.69 2.26 1.82 2.66 2.36 2.06 1.74 1.41 1.91 1.7 1.48 1.26 1.02 0.774 1.29 1.01 0.853 0.695 0.529 0.629 0.537 0.44 0.338
Sx 14 17.5 15.8 14 12.2 10.3 9.33 8.36 8.55 7.61 6.64 5.64 5.12 4.59 4.06 3.51 2.95 5.16 4.52 3.85 3.15 2.78 2.41 2.04 2.79 2.38 1.96 1.73 1.5 1.27 1.03 1.48 1.32 1.15 0.969 0.787 1.06 0.946 0.825 0.699 0.569 0.433 0.716 0.558 0.474 0.387 0.295 0.348 0.298 0.244 0.188
rx 15 2.41 2.43 2.45 2.46 2.48 2.49 2.49 1.79 1.81 1.82 1.84 1.85 1.86 1.86 1.87 1.88 1.49 1.5 1.52 1.53 1.54 1.55 1.56 1.18 1.2 1.21 1.22 1.23 1.24 1.25 1.05 1.06 1.07 1.08 1.09 0.895 0.903 0.91 0.918 0.926 0.933 0.735 0.749 0.756 0.764 0.771 0.591 0.598 0.605 0.612
Iy 16 98.1 89.1 79.7 69.9 59.6 54.2 48.8 35.4 31.9 28.1 24.1 22 19.9 17.6 15.4 13 17.8 15.7 13.6 11.3 10 8.76 7.44 7.62 6.62 5.52 4.93 4.32 3.67 3 3.63 3.25 2.86 2.44 2 2.2 1.98 1.75 1.5 1.23 0.948 1.22 0.972 0.837 0.692 0.535 0.476 0.414 0.346 0.271
Zy 17 31.6 28.5 25.3 22 18.6 16.8 15.1 15.4 13.7 11.9 10.1 9.17 8.22 7.25 6.26 5.26 9.3 8.14 6.92 5.66 5 4.33 3.65 5.01 4.28 3.5 3.1 2.68 2.26 1.82 2.66 2.36 2.05 1.74 1.41 1.91 1.7 1.48 1.25 1.02 0.774 1.29 1 0.853 0.694 0.528 0.628 0.536 0.44 0.338
0.534
0.123
0.123
0.189
0.23
0.129
0.62
0.189
0.23
Sy 18 17.5 15.8 14 12.2 10.3 9.33 8.36 8.55 7.61 6.64 5.64 5.12 4.59 4.06 3.51 2.95 5.16 4.52 3.85 3.15 2.78 2.41 2.04 2.79 2.38 1.96 1.73 1.5 1.27 1.03 1.48 1.32 1.15 0.969 0.787 1.06 0.946 0.825 0.699 0.569 0.433 0.716 0.558 0.474 0.387 0.295 0.348 0.298 0.244 0.188
ry 19 2.41 2.43 2.45 2.46 2.48 2.49 2.49 1.79 1.81 1.82 1.84 1.85 1.86 1.86 1.87 1.88 1.49 1.5 1.52 1.53 1.54 1.55 1.56 1.18 1.2 1.21 1.22 1.23 1.24 1.25 1.05 1.06 1.07 1.08 1.09 0.895 0.903 0.91 0.918 0.926 0.933 0.735 0.749 0.756 0.764 0.771 0.591 0.598 0.605 0.612
rz 20 1.56 1.56 1.57 1.57 1.58 1.58 1.59 1.17 1.17 1.17 1.17 1.18 1.18 1.18 1.19 1.19 0.971 0.972 0.975 0.98 0.983 0.986 0.99 0.774 0.774 0.776 0.777 0.779 0.781 0.783 0.679 0.681 0.683 0.685 0.688 0.58 0.58 0.581 0.583 0.585 0.586 0.481 0.481 0.481 0.482 0.482 0.386 0.386 0.387 0.389
J 21 7.13 5.08 3.46 2.21 1.3 0.961 0.683 3.68 2.51 1.61 0.955 0.704 0.501 0.34 0.218 0.129 2.07 1.33 0.792 0.417 0.284 0.183 0.108 1.02 0.61 0.322 0.22 0.141 0.0832 0.0438 0.281 0.192 0.123 0.0731 0.0386 0.23 0.157 0.101 0.0597 0.0313 0.0136 0.188 0.0833 0.0495 0.0261 0.0114 0.0658 0.0393 0.0209 0.0092
Cw 22 32.5 23.4 16.1 10.4 6.16 4.55 3.23 9.24 6.41 4.17 2.5 1.85 1.32 0.899 0.575 0.338 3.53 2.32 1.4 0.744 0.508 0.327 0.193 1.12 0.68 0.366 0.252 0.162 0.0963 0.0505 0.238 0.164 0.106 0.0634 0.0334 0.144 0.1 0.0652 0.039 0.0206 0.009 0.0791 0.0362 0.0218 0.0116 0.0051 0.0174 0.0106 0.0057 0.0025
ro 23 4.29 4.32 4.36 4.39 4.41 4.43 4.45 3.19 3.21 3.25 3.28 3.29 3.3 3.32 3.33 3.35 2.64 2.67 2.7 2.73 2.75 2.76 2.78 2.1 2.13 2.16 2.17 2.19 2.21 2.22 1.87 1.89 1.9 1.92 1.93 1.59 1.61 1.62 1.63 1.65 1.66 1.3 1.33 1.35 1.36 1.38 1.04 1.06 1.08 1.09
tan alpha 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Qs 25 1 1 1 1 0.997251 0.959168 0.911564 1 1 1 1 1 1 0.972769 0.911564 0.825877 1 1 1 1 1 0.98297 0.911564 1 1 1 1 1 0.997251 0.911564 1 1 1 1 0.965119 1 1 1 1 1 0.911564 1 1 1 1 0.98297 1 1 1 1
b/t 26 7.111111 8 9.142857 10.66667 12.8 14.22222 16 6 6.857143 8 9.6 10.66667 12 13.71429 16 19.2 5.714286 6.666667 8 10 11.42857 13.33333 16 5.333333 6.4 8 9.142857 10.66667 12.8 16 7 8 9.333333 11.2 14 6 6.857143 8 9.6 12 16 5 6.666667 8 10 13.33333 5.333333 6.4 8 10.66667
0.129
0.62
0.391
0.0029
0.0008
1.1
1
0.912
16
Iz 27 40.88448 36.74736 32.78317 28.34635 24.19012 21.89343 19.8203 15.0579 13.34678 11.58089 9.760257 8.98098 8.034148 7.073392 6.202518 5.197087 7.561585 6.594592 5.608688 4.600316 4.07774 3.548515 3.008907 3.252983 2.76174 2.25816 1.992306 1.735565 1.463906 1.183262 1.507604 1.340269 1.166223 0.985373 0.804685 0.9251 0.817452 0.712254 0.605002 0.492804 0.374302 0.520562 0.400255 0.337787 0.276466 0.209324 0.204125 0.172835 0.141382 0.109254
Sz tip 28 13.36864 12.1422 10.89598 9.47702 8.135551 7.402745 6.738015 6.492404 5.79883 5.102136 4.33378 4.016134 3.59557 3.188299 2.797986 2.361379 3.881559 3.441388 2.954146 2.4458 2.186462 1.9045 1.628799 2.081634 1.787501 1.492299 1.31815 1.160501 0.989379 0.800663 1.122144 1.009548 0.87962 0.75143 0.617805 0.796766 0.712074 0.626807 0.53727 0.441654 0.338562 0.528111 0.416516 0.355831 0.294414 0.225374 0.259834 0.223322 0.185477 0.14501
Sz heel 29 12.04571 11.0103 10.03515 8.868981 7.739817 7.068946 6.458558 5.724486 5.214141 4.626513 4.012526 3.735595 3.401797 3.031299 2.70731 2.29681 3.427467 3.067816 2.697919 2.290785 2.05957 1.831518 1.576014 1.811186 1.600693 1.353187 1.22502 1.086044 0.932557 0.774715 1.015273 0.92011 0.824644 0.711709 0.596434 0.704138 0.637294 0.569728 0.497443 0.416824 0.32595 0.458397 0.373381 0.324968 0.274952 0.21545 0.228383 0.200678 0.170601 0.137708
rz 30 1.56 1.56 1.57 1.57 1.58 1.58 1.59 1.17 1.17 1.17 1.17 1.18 1.18 1.18 1.19 1.19 0.971 0.972 0.975 0.98 0.983 0.986 0.99 0.774 0.774 0.776 0.777 0.779 0.781 0.783 0.679 0.681 0.683 0.685 0.688 0.58 0.58 0.581 0.583 0.585 0.586 0.481 0.481 0.481 0.482 0.482 0.386 0.386 0.387 0.389
Iw 31 155.3155 141.4526 126.6168 111.4537 95.00988 86.50657 77.7797 55.7421 50.45323 44.61911 38.43974 35.01902 31.76585 28.12661 24.59748 20.80291 28.03842 24.80541 21.59131 17.99968 15.92226 13.97148 11.87109 11.98702 10.47826 8.78184 7.867694 6.904435 5.876094 4.816738 5.752396 5.159731 4.553778 3.894628 3.195315 3.4749 3.142548 2.787746 2.394998 1.967196 1.521698 1.919438 1.543745 1.336213 1.107534 0.860676 0.747875 0.655165 0.550618 0.432746
Sw 32 27.45616 25.00553 22.3829 19.70241 16.79553 15.29235 13.74964 13.13854 11.89194 10.51682 9.060334 8.254062 7.487283 6.629505 5.797682 4.903294 7.930461 7.016029 6.106945 5.091079 4.503495 3.951733 3.357652 4.238051 3.704624 3.104849 2.78165 2.441086 2.077513 1.702974 2.324319 2.084846 1.840004 1.573667 1.291102 1.638084 1.481411 1.314156 1.129013 0.927345 0.717335 1.085798 0.873274 0.755876 0.626516 0.486872 0.528828 0.463271 0.389346 0.305998
Sc heel x 33 40.875 37.75424 34.50216 30.9292 26.96833 24.74886 22.48848 19.03226 17.62431 15.87571 14.01163 12.94118 11.91617 10.66667 9.506173 8.125 11.41026 10.32895 9.251701 7.957746 7.142857 6.394161 5.511111 6 5.42623 4.677966 4.286957 3.823009 3.306306 2.777778 3.457143 3.15534 2.86 2.492339 2.096436 2.368138 2.183021 1.979638 1.744186 1.471292 1.167488 1.519303 1.282322 1.138776 0.973277 0.778748 0.753165 0.679803 0.590444 0.483066
Sc heel y 34 40.875 37.75424 34.50216 30.9292 26.96833 24.74886 22.48848 19.03226 17.62431 15.87571 14.01163 12.94118 11.91617 10.66667 9.506173 8.125 11.41026 10.32895 9.251701 7.957746 7.142857 6.394161 5.511111 6 5.42623 4.677966 4.286957 3.823009 3.306306 2.777778 3.457143 3.15534 2.86 2.492339 2.096436 2.368138 2.183021 1.979638 1.744186 1.471292 1.167488 1.519303 1.282322 1.138776 0.973277 0.778748 0.753165 0.679803 0.590444 0.483066
0.075065 0.100433 0.099398 Minor Axis
0.391
0.302935 0.214208 0.353933 0.353933 Major Axis Geometric Axis
Shape 1 L8X6X1 L8X6X7/8 L8X6X3/4 L8X6X5/8 L8X6X9/16 L8X6X1/2 L8X6X7/16 L8X4X1 L8X4X7/8 L8X4X3/4 L8X4X5/8 L8X4X9/16 L8X4X1/2 L8X4X7/16 L7X4X3/4 L7X4X5/8 L7X4X1/2 L7X4X7/16 L7X4X3/8 L6X4X7/8 L6X4X3/4 L6X4X5/8 L6X4X9/16 L6X4X1/2 L6X4X7/16 L6X4X3/8 L6X4X5/16 L6X3-1/2X1/2 L6X3-1/2X3/8 L6X3-1/2X5/16 L5X3-1/2X3/4 L5X3-1/2X5/8 L5X3-1/2X1/2 L5X3-1/2X3/8 L5X3-1/2X5/16 L5X3-1/2X1/4 L5X3X1/2 L5X3X7/16 L5X3X3/8 L5X3X5/16 L5X3X1/4 L4X3-1/2X1/2 L4X3-1/2X3/8 L4X3-1/2X5/16 L4X3-1/2X1/4 L4X3X5/8 L4X3X1/2 L4X3X3/8 L4X3X5/16 L4X3X1/4
Weight 2 44.4 39.3 34 28.6 25.9 23.2 20.4 37.6 33.3 28.9 24.4 22.1 19.7 17.4 26.2 22.1 17.9 15.8 13.6 27.2 23.6 19.9 18.1 16.2 14.2 12.3 10.3 15.4 11.7 9.83 19.8 16.8 13.6 10.4 8.72 7.03 12.8 11.3 9.74 8.19 6.6 11.9 9.1 7.65 6.18 13.6 11.1 8.47 7.12 5.75
Area 3 13.1 11.5 9.99 8.41 7.61 6.8 5.99 11.1 9.79 8.49 7.16 6.49 5.8 5.11 7.7 6.5 5.26 4.63 4 7.98 6.94 5.86 5.31 4.75 4.18 3.61 3.03 4.52 3.44 2.89 5.82 4.93 4 3.05 2.56 2.07 3.75 3.31 2.86 2.41 1.94 3.5 2.68 2.25 1.82 3.99 3.25 2.49 2.09 1.69
depth 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4
b 5 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3 3 3 3 3 3.5 3.5 3.5 3.5 3 3 3 3 3
t 6 1 0.875 0.75 0.625 0.5625 0.5 0.4375 1 0.875 0.75 0.625 0.5625 0.5 0.4375 0.75 0.625 0.5 0.4375 0.375 0.875 0.75 0.625 0.5625 0.5 0.4375 0.375 0.3125 0.5 0.375 0.3125 0.75 0.625 0.5 0.375 0.3125 0.25 0.5 0.4375 0.375 0.3125 0.25 0.5 0.375 0.3125 0.25 0.625 0.5 0.375 0.3125 0.25
kdes 7 1.5 1.375 1.25 1.125 1.0625 1 0.9375 1.5 1.375 1.25 1.125 1.0625 1 0.9375 1.25 1.125 1 0.9375 0.875 1.375 1.25 1.125 1.0625 1 0.9375 0.875 0.8125 1 0.875 0.8125 1.1875 1.0625 0.9375 0.8125 0.75 0.6875 0.9375 0.875 0.8125 0.75 0.6875 0.875 0.75 0.6875 0.625 1 0.875 0.75 0.6875 0.625
x 8 1.65 1.6 1.56 1.51 1.49 1.46 1.44 1.04 0.997 0.949 0.902 0.878 0.854 0.829 1 0.958 0.91 0.886 0.861 1.12 1.07 1.03 1 0.981 0.957 0.933 0.908 0.829 0.781 0.756 0.993 0.947 0.901 0.854 0.829 0.804 0.746 0.722 0.698 0.673 0.648 0.994 0.947 0.923 0.897 0.867 0.822 0.775 0.75 0.725
y 9 2.65 2.6 2.55 2.5 2.48 2.46 2.43 3.03 2.99 2.94 2.89 2.86 2.84 2.81 2.5 2.45 2.4 2.38 2.35 2.12 2.07 2.03 2 1.98 1.95 1.93 1.9 2.07 2.02 2 1.74 1.69 1.65 1.6 1.57 1.55 1.74 1.72 1.69 1.67 1.64 1.24 1.2 1.17 1.14 1.37 1.32 1.27 1.25 1.22
L3-1/2X3X1/2 L3-1/2X3X7/16 L3-1/2X3X3/8 L3-1/2X3X5/16 L3-1/2X3X1/4 L3-1/2X2-1/2X1/2 L3-1/2X2-1/2X3/8 L3-1/2X2-1/2X5/16 L3-1/2X2-1/2X1/4 L3X2-1/2X1/2 L3X2-1/2X7/16 L3X2-1/2X3/8 L3X2-1/2X5/16 L3X2-1/2X1/4 L3X2-1/2X3/16 L3X2X1/2 L3X2X3/8 L3X2X5/16 L3X2X1/4 L3X2X3/16 L2-1/2X2X3/8 L2-1/2X2X5/16 L2-1/2X2X1/4 L2-1/2X2X3/16
10.3 9.09 7.88 6.65 5.38 9.41 7.23 6.1 4.94 8.53 7.56 6.56 5.54 4.49 3.41 7.7 5.95 5.03 4.09 3.12 5.3 4.49 3.65 2.78
3.02 2.67 2.32 1.95 1.58 2.76 2.12 1.79 1.45 2.51 2.22 1.93 1.63 1.32 1 2.26 1.75 1.48 1.2 0.917 1.56 1.32 1.07 0.818
3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3 3 3 3 3 3 3 3 3 3 3 2.5 2.5 2.5
3 3 3 3 3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2 2 2 2 2 2 2 2 2.5
2
0.5 0.4375 0.375 0.3125 0.25 0.5 0.375 0.3125 0.25 0.5 0.4375 0.375 0.3125 0.25 0.1875 0.5 0.375 0.3125 0.25 0.1875 0.375 0.3125 0.25 0.1875
0.875 0.8125 0.75 0.6875 0.625 0.875 0.75 0.6875 0.625 0.875 0.8125 0.75 0.6875 0.625 0.5625 0.8125 0.6875 0.625 0.5625 0.5 0.625 0.5625 0.5 0.4375
0.869 0.846 0.823 0.798 0.773 0.701 0.655 0.632 0.607 0.746 0.724 0.701 0.677 0.653 0.627 0.58 0.535 0.511 0.487 0.462 0.578 0.555 0.532 0.508
1.12 1.09 1.07 1.05 1.02 1.2 1.15 1.13 1.1 0.995 0.972 0.949 0.925 0.9 0.874 1.08 1.03 1.01 0.98 0.952 0.826 0.803 0.779 0.754
xp 10 0.816 0.721 0.624 0.526 0.476 0.425 0.374 0.691 0.612 0.531 0.448 0.405 0.363 0.32 0.55 0.464 0.376 0.331 0.286 0.665 0.578 0.488 0.442 0.396 0.349 0.301 0.252 0.376 0.287 0.241 0.582 0.493 0.4 0.305 0.256 0.207 0.375 0.331 0.286 0.241 0.194 0.438 0.334 0.281 0.227 0.498 0.407 0.311 0.262 0.211
yp 11 1.47 1.41 1.34 1.27 1.23 1.2 1.16 2.47 2.41 2.34 2.27 2.23 2.2 2.16 1.87 1.8 1.74 1.7 1.67 1.44 1.38 1.31 1.28 1.25 1.22 1.19 1.16 1.48 1.41 1.38 1.12 1.06 0.997 0.933 0.901 0.868 1.25 1.21 1.18 1.15 1.12 0.497 0.433 0.401 0.368 0.81 0.747 0.683 0.651 0.618
Ix 12 80.9 72.4 63.5 54.2 49.4 44.4 39.3 69.7 62.6 55 47 42.9 38.6 34.2 37.8 32.4 26.6 23.6 20.5 27.7 24.5 21 19.2 17.3 15.4 13.4 11.4 16.6 12.9 10.9 13.9 12 9.96 7.75 6.58 5.36 9.43 8.41 7.35 6.24 5.09 5.3 4.15 3.53 2.89 6.01 5.02 3.94 3.36 2.75
Zx 13 27.3 24.3 21.1 17.9 16.2 14.6 12.9 24.3 21.7 18.9 16.1 14.6 13.1 11.6 14.8 12.5 10.2 9.03 7.81 12.7 11.1 9.44 8.59 7.71 6.81 5.89 4.96 7.49 5.74 4.84 7.6 6.5 5.33 4.09 3.45 2.78 5.12 4.53 3.93 3.32 2.68 3.46 2.66 2.24 1.81 4.08 3.36 2.6 2.19 1.77
Sx 14 15.1 13.4 11.7 9.86 8.94 8.01 7.06 14 12.5 10.9 9.2 8.34 7.48 6.59 8.39 7.12 5.79 5.11 4.42 7.13 6.23 5.29 4.81 4.31 3.81 3.3 2.77 4.23 3.23 2.72 4.26 3.63 2.97 2.28 1.92 1.55 2.89 2.56 2.22 1.87 1.51 1.92 1.48 1.25 1.01 2.28 1.87 1.44 1.22 0.988
rx 15 2.49 2.5 2.52 2.54 2.55 2.55 2.56 2.51 2.53 2.55 2.56 2.57 2.58 2.59 2.21 2.23 2.25 2.26 2.27 1.86 1.88 1.89 1.9 1.91 1.92 1.93 1.94 1.92 1.93 1.94 1.55 1.56 1.58 1.59 1.6 1.61 1.58 1.59 1.6 1.61 1.62 1.23 1.25 1.25 1.26 1.23 1.24 1.26 1.27 1.27
Iy 16 38.8 34.9 30.8 26.4 24.1 21.7 19.3 11.6 10.5 9.37 8.11 7.44 6.75 6.03 9 7.79 6.48 5.79 5.06 9.7 8.63 7.48 6.86 6.22 5.56 4.86 4.13 4.24 3.33 2.84 5.52 4.8 4.02 3.15 2.69 2.2 2.55 2.29 2.01 1.72 1.41 3.76 2.96 2.52 2.07 2.85 2.4 1.89 1.62 1.33
Zy 17 16.2 14.4 12.5 10.5 9.52 8.52 7.5 7.73 6.77 5.82 4.86 4.39 3.91 3.42 5.6 4.69 3.77 3.31 2.84 6.26 5.42 4.56 4.13 3.69 3.24 2.79 2.33 2.88 2.18 1.82 4.07 3.43 2.79 2.12 1.77 1.42 2.08 1.82 1.57 1.31 1.05 2.69 2.06 1.74 1.4 2.45 1.99 1.52 1.28 1.03
Sy 18 8.92 7.94 6.92 5.88 5.34 4.79 4.23 3.94 3.51 3.07 2.62 2.38 2.15 1.9 3.01 2.56 2.1 1.86 1.61 3.37 2.95 2.52 2.29 2.06 1.83 1.58 1.34 1.59 1.22 1.03 2.2 1.88 1.55 1.19 1.01 0.816 1.13 1 0.874 0.739 0.6 1.5 1.16 0.98 0.794 1.34 1.1 0.851 0.721 0.585
0.431 0.382 0.331 0.279 0.226 0.395 0.303 0.256 0.207 0.418 0.37 0.321 0.271 0.22 0.167 0.377 0.291 0.247 0.2 0.153 0.311 0.264 0.214 0.164
0.48 0.446 0.411 0.375 0.336 0.736 0.668 0.633 0.596 0.494 0.462 0.43 0.397 0.363 0.328 0.736 0.668 0.633 0.596 0.556 0.425 0.391 0.356 0.318
3.45 3.1 2.73 2.33 1.92 3.24 2.56 2.2 1.81 2.07 1.87 1.65 1.41 1.16 0.899 1.92 1.54 1.32 1.09 0.847 0.914 0.79 0.656 0.511
2.61 2.32 2.03 1.72 1.39 2.52 1.96 1.67 1.36 1.86 1.66 1.45 1.23 1 0.761 1.78 1.39 1.19 0.969 0.743 0.982 0.839 0.688 0.529
1.45 1.29 1.12 0.951 0.773 1.41 1.09 0.925 0.753 1.03 0.921 0.803 0.681 0.555 0.423 1 0.779 0.662 0.541 0.414 0.546 0.465 0.381 0.293
1.07 1.08 1.09 1.09 1.1 1.08 1.1 1.11 1.12 0.91 0.917 0.924 0.932 0.94 0.947 0.922 0.937 0.945 0.953 0.961 0.766 0.774 0.782 0.79
2.32 2.09 1.84 1.58 1.3 1.36 1.09 0.937 0.775 1.29 1.17 1.03 0.888 0.734 0.568 0.667 0.539 0.467 0.39 0.305 0.513 0.446 0.372 0.292
1.97 1.75 1.52 1.28 1.04 1.39 1.07 0.9 0.728 1.34 1.19 1.03 0.873 0.707 0.536 0.887 0.679 0.572 0.463 0.351 0.657 0.557 0.454 0.347
1.09 0.971 0.847 0.718 0.585 0.756 0.589 0.501 0.41 0.736 0.656 0.573 0.487 0.397 0.303 0.47 0.368 0.314 0.258 0.198 0.361 0.309 0.253 0.195
ry 19 1.72 1.74 1.75 1.77 1.78 1.79 1.8 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.08 1.1 1.11 1.12 1.12 1.1 1.12 1.13 1.14 1.14 1.15 1.16 1.17 0.968 0.984 0.991 0.974 0.987 1 1.02 1.02 1.03 0.824 0.831 0.838 0.846 0.853 1.04 1.05 1.06 1.07 0.845 0.858 0.873 0.88 0.887
rz 20 1.28 1.28 1.29 1.29 1.3 1.3 1.31 0.844 0.846 0.85 0.856 0.859 0.863 0.867 0.855 0.86 0.866 0.869 0.873 0.854 0.856 0.859 0.861 0.864 0.867 0.87 0.874 0.756 0.763 0.767 0.744 0.746 0.75 0.755 0.758 0.761 0.642 0.644 0.646 0.649 0.652 0.716 0.719 0.721 0.723 0.631 0.633 0.636 0.638 0.639
J 21 4.34 2.96 1.9 1.12 0.823 0.584 0.396 3.68 2.51 1.61 0.955 0.704 0.501 0.34 1.47 0.868 0.456 0.31 0.198 2.03 1.31 0.775 0.572 0.407 0.276 0.177 0.104 0.386 0.168 0.099 1.09 0.651 0.343 0.15 0.0883 0.0464 0.322 0.22 0.141 0.0832 0.0438 0.301 0.132 0.0782 0.0412 0.529 0.281 0.123 0.0731 0.0386
Cw 22 16.3 11.3 7.28 4.33 3.2 2.28 1.55 12.9 8.89 5.75 3.42 2.53 1.8 1.22 3.97 2.37 1.25 0.851 0.544 4.04 2.64 1.59 1.18 0.843 0.575 0.369 0.217 0.779 0.341 0.201 1.52 0.918 0.491 0.217 0.128 0.067 0.444 0.304 0.196 0.116 0.0606 0.302 0.134 0.0798 0.0419 0.472 0.255 0.114 0.0676 0.0356
ro 23 3.88 3.92 3.95 3.98 3.99 4.01 4.02 3.74 3.78 3.81 3.83 3.84 3.86 3.87 3.31 3.34 3.37 3.39 3.4 2.83 2.85 2.89 2.89 2.91 2.92 2.94 2.95 2.88 2.9 2.92 2.36 2.39 2.42 2.45 2.46 2.48 2.38 2.4 2.41 2.42 2.43 2.03 2.06 2.08 2.08 1.91 1.94 1.97 1.98 1.99
tan alpha 24 0.542 0.546 0.55 0.554 0.556 0.557 0.559 0.247 0.252 0.257 0.262 0.264 0.266 0.268 0.324 0.329 0.334 0.337 0.339 0.422 0.428 0.435 0.438 0.441 0.443 0.446 0.449 0.343 0.349 0.352 0.464 0.472 0.479 0.486 0.489 0.491 0.357 0.361 0.364 0.368 0.371 0.75 0.755 0.757 0.759 0.534 0.543 0.551 0.554 0.558
Qs 25 1 1 1 0.997251 0.959168 0.911564 0.850359 1 1 1 0.997251 0.959168 0.911564 0.850359 1 1 0.965119 0.911564 0.840158 1 1 1 1 1 0.973 0.912 0.826 1 0.912 0.826 1 1 1 0.98297 0.911564 0.804455 1 1 0.98297 0.911564 0.804455 1 1 0.997251 0.911564 1 1 1 0.997251 0.911564
Iz 26 21.46304 18.8416 16.62436 13.99508 12.8609 11.492 10.27944 7.90693 7.00686 6.134025 5.24639 4.788848 4.31966 3.841131 5.628893 4.8074 3.944769 3.496395 3.048516 5.819942 5.085188 4.323983 3.936415 3.545856 3.14206 2.732409 2.314544 2.583343 2.002661 1.700155 3.22158 2.743624 2.25 1.738576 1.470884 1.19878 1.545615 1.372776 1.193524 1.015094 0.824702 1.794296 1.385455 1.169642 0.951367 1.588662 1.302239 1.007195 0.850722 0.690062
Sz long tip 27 10.85160952 9.655103413 8.673326855 7.400201822 6.871021861 6.188055768 5.57828821 6.858053582 6.335633935 5.750176387 5.107709351 4.755745613 4.388420411 3.978989542 4.898154085 4.348035097 3.692279423 3.32864071 2.952191997 4.536858385 4.061096243 3.566982098 3.269263613 2.99991337 2.696089595 2.379736128 2.037214567 2.680185299 2.157759692 1.868748887 2.797237189 2.446052089 2.072698552 1.647370656 1.410551866 1.171531363 1.788101879 1.622410825 1.440322062 1.250545475 1.036613793 1.423140863 1.125800624 0.957677475 0.783838121 1.549339041 1.307610648 1.041421115 0.895533127 0.734244869
0.877 0.885 0.892 0.9 0.908 0.701 0.716 0.723 0.731 0.718 0.724 0.731 0.739 0.746 0.753 0.543 0.555 0.562 0.569 0.577 0.574 0.581 0.589 0.597
0.618 0.62 0.622 0.624 0.628 0.532 0.535 0.538 0.541 0.516 0.516 0.517 0.518 0.52 0.521 0.425 0.426 0.428 0.431 0.435 0.419 0.42 0.423 0.426
0.26 0.178 0.114 0.068 0.036 0.234 0.103 0.0611 0.0322 0.213 0.146 0.0943 0.056 0.0296 0.013 0.192 0.0855 0.051 0.027 0.0119 0.0746 0.0444 0.0235 0.0103
0.191 0.132 0.0858 0.0512 0.027 0.159 0.0714 0.0426 0.0225 0.112 0.0777 0.0507 0.0304 0.0161 0.007 0.0908 0.0413 0.0248 0.0132 0.0058 0.0268 0.0162 0.0087 0.0038
1.75 1.76 1.78 1.79 1.81 1.67 1.69 1.71 1.72 1.46 1.48 1.49 1.51 1.52 1.53 1.39 1.42 1.44 1.45 1.46 1.21 1.23 1.25 1.26
0.713 0.717 0.72 0.722 0.725 0.485 0.495 0.5 0.504 0.666 0.671 0.675 0.68 0.683 0.687 0.413 0.426 0.432 0.437 0.442 0.613 0.618 0.624 0.628
1 1 1 1 0.965119 1 1 1 0.965119 1 1 1 1 1 0.911564 1 1 1 1 0.911564 1 1 1 0.98297
1.15341 1.026348 0.897571 0.759283 0.623127 0.781146 0.606797 0.518105 0.424387 0.668303 0.591088 0.515868 0.437368 0.356928 0.271441 0.408213 0.317583 0.271112 0.222913 0.173519 0.273875 0.232848 0.191454 0.148447
1.066741619 0.957129765 0.849736575 0.729704299 0.603656787 0.949339767 0.766564698 0.669276408 0.557402283 0.737106903 0.662600475 0.588034841 0.505406683 0.419116738 0.322531892 0.619469094 0.508228755 0.446669305 0.376728369 0.30079048 0.390247465 0.33950566 0.284971791 0.225896079
Sz short tip 28 7.064521207 6.207699761 5.499392028 4.635780178 4.272843585 3.814784528 3.417247176 3.312693802 2.925448869 2.545388489 2.165428774 1.968991288 1.771255486 1.568605548 2.431964708 2.072799505 1.693811005 1.50021642 1.303484564 2.682796786 2.338808446 1.999034258 1.81298192 1.637710914 1.448219515 1.26053915 1.066381007 1.280700973 0.988915976 0.838329443 1.734428037 1.479714058 1.218076612 0.942640006 0.796332973 0.64901938 0.906055069 0.804118048 0.696597238 0.591891829 0.479019882 1.149600205 0.899415614 0.760932029 0.619648091 1.037928669 0.855198524 0.664009653 0.561964017 0.455791352
Sz heel 29 7.910075 7.109272 6.404355 5.526507 5.12922 4.647853 4.20834 4.554076 4.127963 3.715495 3.268764 3.032944 2.777282 2.513578 3.269044 2.868907 2.429881 2.185703 1.941859 3.135518 2.827959 2.464845 2.29075 2.09006 1.887344 1.667903 1.44066 1.774571 1.427422 1.234526 1.972652 1.738936 1.475037 1.184742 1.025425 0.853319 1.200395 1.086802 0.967234 0.840075 0.700096 1.165733 0.936851 0.811073 0.677746 1.126614 0.963007 0.779761 0.674211 0.562133
Iw 30 98.23696 88.4584 77.67564 66.60492 60.6391 54.608 48.32056 73.39307 66.09314 58.23598 49.86361 45.55115 41.03034 36.38887 41.17111 35.3826 29.13523 25.8936 22.51148 31.58006 28.04481 24.15602 22.12359 19.97414 17.81794 15.52759 13.21546 18.25666 14.22734 12.03984 16.19842 14.05638 11.73 9.161424 7.799116 6.36122 10.43439 9.327224 8.166476 6.944906 5.675298 7.265704 5.724545 4.880358 4.008633 7.271338 6.117761 4.822805 4.129278 3.389938
Sw long tip 31 17.89446364 16.06493624 14.05342005 12.01649918 10.92894173 9.838735718 8.683624119 14.46345541 12.9550027 11.33666153 9.641508103 8.770217534 7.881160557 6.960792835 8.971430006 7.656102833 6.26381609 5.555346621 4.809878053 7.874959115 6.952100147 5.962477062 5.44224291 4.902776201 4.355891588 3.789900153 3.21372011 4.579770215 3.543481838 2.991942506 4.799356143 4.137222688 3.439368272 2.669974338 2.263568986 1.843192778 3.141907126 2.800730241 2.438409111 2.068453824 1.681278226 2.590822992 2.040660439 1.73462936 1.421285647 2.665111619 2.226716929 1.744190916 1.491267819 1.219004332
Sw short tip 32 22.31331736 20.14732608 17.75820786 15.26689492 13.91095663 12.52964704 11.1181586 20.10006217 18.191585 16.14573366 13.92521284 12.7874931 11.54718471 10.29365535 12.46491312 10.79405917 8.950128574 7.967657455 6.962212336 10.27681031 9.177247374 7.929836929 7.288073034 6.592481341 5.908961792 5.155411653 4.405445119 6.463413249 5.075530896 4.303588615 6.150771126 5.369047855 4.492779883 3.529530449 3.018529304 2.466002875 4.353940349 3.900466859 3.437861219 2.929235376 2.40918047 2.911405674 2.293479274 1.961364804 1.61522549 3.285396304 2.781642035 2.206133606 1.89089056 1.559372651
Sc heel x 33 30.52830189 27.84615385 24.90196078 21.68 19.91935484 18.04878049 16.17283951 23.00330033 20.93645485 18.70748299 16.26297578 15 13.5915493 12.17081851 15.12 13.2244898 11.08333333 9.915966387 8.723404255 13.06603774 11.83574879 10.34482759 9.6 8.737373737 7.897435897 6.943005181 6 8.019323671 6.386138614 5.45 7.988505747 7.100591716 6.036363636 4.84375 4.191082803 3.458064516 5.41954023 4.889534884 4.349112426 3.736526946 3.103658537 4.274193548 3.458333333 3.017094017 2.535087719 4.386861314 3.803030303 3.102362205 2.688 2.254098361
Sc heel y 34 23.51515152 21.8125 19.74358974 17.48344371 16.17449664 14.8630137 13.40277778 11.15384615 10.53159478 9.873551106 8.99113082 8.4738041 7.903981265 7.273823884 9 8.131524008 7.120879121 6.534988713 5.87688734 8.660714286 8.065420561 7.262135922 6.86 6.340468909 5.809822362 5.209003215 4.54845815 5.114595899 4.263764405 3.756613757 5.558912387 5.068637804 4.461709212 3.68852459 3.244873341 2.736318408 3.418230563 3.171745152 2.87965616 2.555720654 2.175925926 3.782696177 3.125659979 2.730227519 2.307692308 3.287197232 2.919708029 2.438709677 2.16 1.834482759
Beta w 35 3.31 3.31 3.31 3.31 3.31 3.31 3.31 5.48 5.48 5.48 5.48 5.48 5.48 5.48 4.37 4.37 4.37 4.37 4.37 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.69 3.69 3.69 2.4 2.4 2.4 2.4 2.4 2.4 2.99 2.99 2.99 2.99 2.99 0.87 0.87 0.87 0.87 1.65 1.65 1.65 1.65 1.65
0.838732498 0.74898342 0.659678591 0.560939487 0.461220916 0.594841532 0.463309054 0.396956472 0.324485311 0.56374061 0.50222139 0.440927191 0.37604557 0.308068203 0.235001464 0.374139475 0.291069028 0.248660255 0.203744233 0.158082486 0.280424712 0.23971629 0.198321037 0.154274585
0.849486 0.775964 0.694124 0.601827 0.508868 0.676673 0.553047 0.483925 0.409197 0.570008 0.517234 0.463925 0.404983 0.34096 0.268303 0.430448 0.354494 0.311752 0.265792 0.214903 0.296252 0.26038 0.221659 0.178595
4.61659 4.163652 3.672429 3.150717 2.596873 3.818854 3.043203 2.618895 2.160613 2.691697 2.448912 2.164132 1.860632 1.537072 1.195559 2.178788 1.761417 1.515888 1.257087 0.978481 1.153125 1.003152 0.836546 0.654553
1.890219111 1.698380484 1.497171631 1.284172026 1.054970611 1.607698494 1.269761091 1.09010197 0.894153738 1.292659738 1.173172297 1.034401365 0.887470474 0.731097649 0.567325429 1.091571358 0.871093415 0.746936291 0.614415235 0.475001098 0.66682811 0.57807047 0.480305464 0.374292104
2.148173498 1.944757437 1.715789206 1.472096412 1.217486319 2.047898282 1.645746133 1.418611381 1.177911795 1.495042756 1.363003496 1.206943046 1.039460206 0.86114875 0.671298416 1.414550611 1.157485341 0.998816208 0.835909025 0.655596271 0.796694318 0.695313104 0.581730462 0.457086427
3.080357143 2.844036697 2.551401869 2.219047619 1.882352941 2.7 2.226086957 1.946902655 1.645454545 2.08040201 1.923868313 1.738672287 1.524324324 1.288888889 1.028604119 1.777777778 1.495145631 1.306930693 1.112244898 0.889705882 1.10653753 0.98381071 0.842105263 0.677718833
2.669735328 2.470449173 2.235722965 1.979949875 1.681759379 1.940085592 1.664122137 1.482594937 1.276771005 1.72922252 1.616022099 1.469329529 1.311669129 1.124042879 0.905901116 1.15 1.007476636 0.913894325 0.800821355 0.66017316 0.887543253 0.803603604 0.69924812 0.57480315
0.87 0.87 0.87 0.87 0.87 1.62 1.62 1.62 1.62 0.86 0.86 0.86 0.86 0.86 0.86 1.56 1.56 1.56 1.56 1.56 0.85 0.85 0.85 0.85