UNIVERSIDAD RICARDO PALMA
INTEGRANTES: CASTRO ROSALES JOHN MARIN ABARCA GIANMARCO MEZA ZAVALA, Julio SANCHEZ MALPARTIDA DIEGO CURSO: INVESTIGACIÒN DE OPERACIONES ll PROFESOR:ING. JAIME GUERRA
INTRODUCCIÓN Las "colas" son un aspecto de la vida moderna que nos encontramos continuamente en nuestras actividades diarias. En el contador de un supermercado, accediendo al Metro,
en los Bancos, etc., el fenómeno de las colas surge cuando unos recursos compartidos necesitan ser accedidos para dar servicio a un elevado número de trabajos o clientes.
En el presente trabajo se realiza un análisis de tiempos de espera en el servicio de atención del
minimarket del “GRIFO REPSOL”; el primer capítulo trata de la problematización, objetivos y planteamiento de las hipótesis a estudiar; el segundo capítulo hace referencia a los antecedentes, y marco teórico; el tercer capítulo hace referencia al análisis y diagnóstico del escenario actual y el cuarto capítulo es el análisis y construcción del modelo actual para terminar con las conclusiones y bibliografía.
PROBLEMA , OBJETIVO Y HIPOTESIS DE ESTUDIO
PROBLEMÁTICA: Minimarket repshop es una establecimiento de REPSOL que brinda bienes y servicios
para las personas de nuestras sociedad. Se estuvo observando en dicho establecimiento “repshop” los problemas que tienen que pasar los clientes en hacer largas colas para poder pagar los productos que han comprado El problema básicamente se dirige al personal que no está debidamente capacitado con respecto al software que se utiliza en los módulos, por tanto la demora, algunas veces se hace lento el servicio por la inexperiencia del servidor o por la forma de pago de los clientes .
Las colas se forman durante todo el día, pero en mayor cantidad es en las tardes y noches m donde las personas tienden a comprar sus productos de primera necesidad es por eso que al identificar ya el problema , se ha querido estudiar el lugar con aquellos arribos de personas durante estas horas para así encontrar la solución y reducir los tiempos de espera al igual que las colas
•OBJETIVOS I.Objetivo General •Mejorar de atención al cliente en el servicio del minimarket del “GRIFO REPSOL” I.Objetivos Específicos
•Determinar los factores que influyen en el tiempo de atención al cliente en el servicio del minimarket del “GRIFO REPSOL”. •Determinar qué tipo de modelo de cola se ajusta al servicio del minimarket del “GRIFO REPSOL”. •Establecer la capacidad de atención del servicio del minimarket del “GRIFO REPSOL” Establecer los canales de servicio para la mejora de la atención de clientes
•HIPÓTESIS DE ESTUDIO I.Hipótesis General. •Después del análisis de los tiempos de espera de los clientes la atención se optimizará en un 30%. •Es posible mejorar y comprender el sistema de manera tal, que podamos
identificar todo los factores pertinentes, y así poder mejorar la calidad de servicio en la atención al cliente. •En el estudio se logrará demostrar que la cantidad de personas que entrar a un modulo es mucho mayor a la deseada, ya sea por no abastecerse de un buen
numero de personal para dicha tarea por lo tanto la atención, el tiempo de espera y las colas seguirán aumentando si el negocio no busca tener mayor servidores y recursos para la atención
Antecedentes y metodología
•ANTECEDENTES El origen de la Teoría de Colas está en el esfuerzo de Agner Kraup Erlang (Dinamarca, 1878 - 1929) en 1909 para analizar la congestión de tráfico telefónico con el objetivo de cumplir la demanda incierta de servicios en el sistema telefónico de Copenhague. Sus investigaciones acabaron en una nueva teoría denominada teoría de colas o de líneas de espera. Esta teoría es ahora una herramienta de valor en negocios debido a que un gran número de problemas
pueden caracterizarse, como problemas de congestión llegada-salida.
•METODOLOGÍA DE ESTUDIO Para el desarrollo de la presente investigación utilizaremos el método observacional descriptivo, con la toma de tiempos de las diversas operaciones que realiza el cliente en el servicio del minimarket del “GRIFO REPSOL”.
MARCO TEÓRICO I.Marco Referencial Un sistema de colas se puede describir como: “clientes” que llegan buscando un servicio, esperan si este no es inmediato, y abandonan el sistema una vez han sido atendidos. En algunos casos se puede itir que los clientes abandonan el sistema si se cansan de esperar. El término “cliente” se usa con un sentido general y no implica que sea un ser humano, puede significar piezas esperando su turno para ser procesadas o una lista de trabajo esperando para imprimir en una impresora en red.
Características de los sistemas de colas Seis son las características básicas que se deben utilizar para describir adecuadamente un sistema de colas: a)Patrón de llegada de los clientes b) Patrón de servicio delos servidores c) Disciplina de cola d) Capacidad del sistema e) Número de canales de servicio f) Número de etapas de servicio Algunos autores incluyen una séptima característica que es la población de posibles clientes.
Patrón de llegada de Los clientes En situaciones de cola habituales, la llegada es estocástica, es decir la llegada depende de una cierta variable aleatoria, en este caso es necesario conocer la distribución probabilística entre dos llegadas de cliente sucesivas. Además habría que tener en cuenta si los clientes llegan independiente o simultáneamente. En
este segundo caso (es decir, si llegan lotes) habría que definir la distribución probabilística de éstos.
Patrones de servicio de los servidores Los servidores pueden tener un tiempo de servicio variable, en cuyo caso hay que asociarle,
para definirlo, una función de probabilidad. También pueden atender en lotes o de modo individual. El tiempo de servicio también puede variar con el número de clientes en la cola, trabajando más rápido o más lento, y en este caso se llama patrones de servicio dependientes. Al igual que el patrón
de
llegadas
el
patrón
estacionario, variando con el tiempo transcurrido.
de
servicio
puede
ser
no-
Disciplina de cola La disciplina de cola es la manera en que los clientes se ordenan en el momento de ser servidos de entre los de la cola. Cuando se piensa en colas se ite que la disciplina de cola normal es FIFO (atender primero a quien llegó primero) Sin embargo en muchas colas es habitual el uso de la disciplina LIFO (atender primero al último). También es posible encontrar reglas de secuencia con prioridades, como por ejemplo secuenciar primero las tareas con menor duración o según tipos de clientes.
El sistema de la cola: es el conjunto formado por la cola y el mecanismo de servicio, junto con la disciplina de la cola, que es lo que nos indica el criterio de qué cliente de la cola elegir para pasar al mecanismo de servicio. Estos elementos pueden verse más claramente en la siguiente figura:
CASO 1: M / M / 1, o más específicamente M/M/1: FIFO/∞/ ∞
Algunas características: Población de clientes infinita, llegadas de clientes probabilística según Poisson; una línea de espera y un solo servidor o canal de atención con tiempo de servicio exponencial.
Supuesto: Condición Estable; cuando, osea la tasa de servicio promedio es mayor que la tasa de llegadas promedio.
CASO 2: M / M / c o más específicamente M/M/S: FIFO/∞/∞
Algunas características: Población de clientes infinita, llegadas de clientes probabilística según Poisson; una línea de espera; “S” servidores idénticos (con tiempo de servicio y tiempo entre llegadas probabilístico y exponencial) Supuesto: Condición Estable; cuando S, osea la tasa de servicio promedio es mayor que la tasa de llegadas promedio.
CASO 3: M / M / S o más específicamente M/M/1: FIFO / N /∞
CASO 4: M/M/S: FIFO / N /∞
CASO 5: M/M/∞: FIFO / ∞ /∞
CASO 6: M/M/1: FIFO - LIFO / K/K
CASO 7: M/M/S: LIFO - FIFO / K /K
Parámetros del Modelo de Cola
Relacionados con el tiempo: W o Ws = Tiempo promedio en el sistema Wq = Tiempo promedio de espera (en cola) Relacionados con el número de clientes: L o Ls = Número promedio de clientes en el sistema Lq = Número promedio de clientes en la cola Pw = Probabilidad de que un cliente que llega tenga que esperar(ningún cajero vacío) Pn = Probabilidad de que existan “n” clientes en el sistema n = 0, 1, 2, 3....... Po = Probabilidad de que no hayan clientes en el sistema Pd = Probabilidad de negación de servicio , o probabilidad de que un cliente que llega no pueda entrar al sistema debido que la “cola está llena”
simulación Simulación es el desarrollo de un modelo lógic Simulación o matemático de un sistema, de tal forma que se obtiene una imitación de la operación de un proceso de la vida real o de un sistema a través del tiempo. Sea realizado a mano o en una computadora, la simulación involucra la generación de una historia artificial de un sistema; la observación de esta historia mediante la manipulación experimental, nos ayuda a inferir las características operacionales de tal sistema.
Ventajas •Una vez construido, el modelo puede ser modificado de manera rápida con el fin de analizar diferentes políticas o escenarios. •Generalmente es más barato mejorar el sistema vía simulación, que hacerlo directamente en el sistema real. •Es mucho más sencillo comprender y visualizar los métodos de simulación que los métodos puramente analíticos. •Los métodos analíticos se desarrollan casi siempre, para sistemas relativamente sencillos donde suele hacerse un gran número de suposiciones o simplificaciones, mientras que con los modelos de simulación es posible analizar sistemas de mayor complejidad o con mayor detalle.
•En algunos casos, la simulación es el Único medio para lograr una solución.
Desventajas
•Los modelos de simulación en una computadora son costosos y requieren mucho tiempo para desarrollarse y validarse. •Se requiere gran cantidad de corridas computacionales para encontrar “soluciones óptimas”, lo cual repercute en altos costos. •Es difícil aceptar los modelos de simulación. •Los modelos de simulación no dan soluciones óptimas. •La solución de un modelo de simulación puede dar al analista un falso sentido de seguridad.
Marco Conceptual Servicio de minimarket del “GRIFO REPSOL”
Es aquel ambiente dependiente de un grifo o centro comercial, etc. Donde se otorgan prestaciones de servicio generalmente las 24 horas del día a clientes que demandan atención inmediata
ANÁLISIS Y DIAGNÓSTICO DEL ESCENARIO ACTUAL
Minimarket del “GRIFO REPSOL” de la Av., prolongación primavera está formado por 1 piso, el cual está dirigido para la atención de los clientes, ésta se realiza las 24 horas del día. El lugar es lo suficientemente amplio para abastecer a todas las personas que llegan al lugar, la caja rápida cuenta con un módulo para la atención del público que llega, en la caja rápida se permiten hasta 10 productos por persona lo que genera que el tiempo de atención no sea muy grande. Nuestro objetivo como equipo de trabajo es tratar de reducir el tiempo en el que se demora el cajero al momento de atender mediante la explicación de métodos analíticos y científicos. Lo cual generaría una gran satisfacción para los clientes
ANÁLISIS Y CONSTRUCCION del MODELO DE COLA
•CONSTRUCCION DEL MODELO DE COLA •ESTIMACIÓN DE PARAMETROS Tasa de arribos ()
Para la estimación de tasa de arribos se registro cuantas personas llegaban al minimarket del “GRIFO REPSOL” en un intervalo de 5 minutos. Luego con esta data se hallo un promedio de personas por minuto. Se utilizo las siguientes Relaciones: Tiempo promedio = Tiempo Total (min.) / Nº de personas Tasa de arribos () = 1 / Tiempo promedio Tasa de servicios ()
Para la tasa de servicios se tomó tiempos en la atención a cada persona para pagar en caja.
I.MODELO DE COLA Analizando el comportamiento que sigue este caso, se puede hallar el modelo de cola correspondiente según KENDALL
MODELO II:
(M/M/2): (FIFO/∞/∞)
Donde: M: Clientes que llegan al sistema siguiendo una distribución M: Clientes que llegan al sistema siguiendo una distribución S: Numero de servidores en el sistema FIFO: Disciplina de servicio ∞: Tamaño del sistema infinito ∞: Tamaño de la fuente infinito Para el caso que venimos analizando, se considera: M: Distribución de Poisson M: Distribución exponencial S: 1 FIFO: Disciplina de servicio ∞: Tamaño del sistema infinito ∞: Tamaño de la fuente infinito
•TRABAJO DE CAMPO •Para el caso que venimos analizando, se considera: M: Distribución de Poisson M: Distribución exponencial S: 1 FIFO: Disciplina de servicio ∞: Tamaño del sistema infinito ∞: Tamaño de la fuente infinito I.TOMA DE TIEMPOS DE ARRIBOS Se realizó la medición en dos días, en 2 horas con 5minutos (6.00 pm – 8:05 pm) y el segundo día (5:00pm-7:05pm) siguiendo intervalos de 4 minutos
Muestra
Intervalos de tiempo
N° de personas por intervalo
TOTAL
1
18:00:00
18:05:00
III
3
2
18:05:00
18:10:00
II
2
3
18:10:00
18:15:00
IIII
4
4
18:15:00
18:20:00
IIII
4
5
18:20:00
18:25:00
IIIII-I
6
6
18:25:00
18:30:00
IIIII-I
6
7
18:30:00
18:35:00
IIIII
5
8
18:35:00
18:40:00
III
3
9
18:40:00
18:45:00
IIIII
5
10
18:45:00
18:50:00
IIIII
5
11
18:50:00
18:55:00
II
2
12
18:55:00
19:00:00
III
3
13
19:00:00
19:05:00
III
3
14
19:05:00
19:10:00
III
3
15
19:10:00
19:15:00
II
2
16
19:15:00
19:20:00
III
3
17
19:20:00
19:25:00
II
2
18
19:25:00
19:30:00
II
2
19
19:30:00
19:35:00
I
1
20
19:35:00
19:40:00
III
3
21
19:40:00
19:45:00
III
3
22
19:45:00
19:50:00
IIII
4
23
19:50:00
19:55:00
II
2
24
19:55:00
20:00:00
III
3
25
20:00:00
20:05:00
III
3
PRIMER DIA DE MUESTRAS
Muestra
Intervalos de tiempo
N° de personas por intervalo
TOTAL
1
17:00:00
17:05:00
IIII
4
2
17:05:00
17:10:00
II
2
3
17:10:00
17:15:00
I
1
4
17:15:00
17:20:00
IIIII
5
5
17:20:00
17:25:00
IIII
4
6
17:25:00
17:30:00
III
3
7
17:30:00
17:35:00
II
2
8
17:35:00
17:40:00
-
0
9
17:40:00
17:45:00
IIII
4
10
17:45:00
17:50:00
IIIII-I
6
11
17:50:00
17:55:00
II
2
12
17:55:00
18:00:00
II
2
13
18:00:00
18:05:00
I
1
14
18:05:00
18:10:00
I
1
15
18:10:00
18:15:00
I
1
16
18:15:00
18:20:00
III
3
17
18:20:00
18:25:00
-
0
18
18:25:00
18:30:00
II
2
19
18:30:00
18:35:00
II
2
20
18:35:00
18:40:00
III
3
21
18:40:00
18:45:00
II
2
22
18:45:00
18:50:00
II
2
23
18:50:00
18:55:00
IIII
4
24
18:55:00
19:00:00
III
3
25
19:00:00
19:05:00
II
2
SEGUNDO DIA DE MUESTRAS
Analizando los datos obtenidos se calcula: clientes que son atendidos en caja rápida de minimarket, tomando como muestra la hora punta, del minimarket
λ (tarde) client/min Primer dia
0,656
Segundo dia
0,488
Prom. Parcial
0,572
Analizando los datos obtenidos se calcula: TOMA DE TIEMPOS DE SERVICIO Muestra
Tiempo cronometrado de salida en segundos
Muestra
Tiempo cronometrado de salida en segundos
1
80
1
131
2
125
2
83
3
53
3
62
4
87
4
124
5
102
5
98
6
106
6
145
7
183
7
69
8
51
8
0
9
162
9
88
10
60
10
128
11
30
11
98
12
45
12
72
13
52
13
45
14
158
14
60
15
127
15
72
16
39
16
91
17
140
17
0
18
128
18
74
19
20
19
81
20
140
20
96
21
32
21
69
22
92
22
79
23
50
23
145
24
63
24
98
25
42
25
51
TOTAL
2167
TOTAL
2059
μ₀ client/min Primer dia 0,692 Segundo 0,729 dia μ₀ = 0,710
PARA VER SI SIGUE LOS DATOS TOMADOS SON LOS ADECUADOS UTILIZAMOS EL PROGRAMA START FIT
Se observa que sigue la grafica sigue una distribución de poisson el cual se encuentra en los siguientes datos
UTILIZANDO TORA CON UN ESCENARIO Y DOS ESCENARIOS:
ANALISIS COMPARATIVO ENTRE ESCENARIO 1 Y ESCENARIO 2
Ajuste a la distribución de Poisson: Docima de hipótesis y ajustes de bondad Muestra
N° de personas por intervalo
1
3
26
4
2
2
27
2
3
4
28
1
4
4
29
5
5
6
30
4
6
6
31
3
7
5
32
2
8
3
33
0
9
5
34
4
10
5
35
6
11
2
36
2
12
3
37
2
13
3
38
1
14
3
39
1
15
2
40
1
16
3
41
3
17
2
42
0
18
2
43
2
19
1
44
2
20
3
45
3
21
3
46
2
22
4
47
2
23
2
48
4
24
3
49
3
25
3
50
2
frecuencia real = fr frecuencia teorica =ft
poisson (x,2.86,0) 'X'' Llegadas 0 1 2 3 4 5 6
Real 0.04 0.1 0.3 0.28 0.14 0.08 0.06 1
Probabilidad Poisson teorico 0.0572688 0.1637887 0.2342178 0.2232876 0.1596506 0.0913202 0.0435293 0.9730629
Px 0.0572688 0.2210574 0.4552752 0.6785628 0.8382134 0.9295336 0.9730629
frecuencias 2 5 15 14 7 4 3 50
0.35
Probabilidad
0.3 0.25 0.2 Real
0.15
Poisson teorico
0.1 0.05 0 0
2
4 ''X'' Llegadas
6
8
fr-ft
(fr-ft)2
(fr-ft)2/ft
-0.0172688
0.0002982
0.0052072
-0.0637887
0.0040690
0.02484294
0.0657822
0.0043273
0.01847554
0.0567124
0.0032163
0.01440427
-0.0196506
0.0003861
0.0024187
-0.0113202
0.0001281
0.00140326
0.0164707
0.0002713
0.00623223
chi obs
0.07298416
SIMULACION
Simulación de Tasa de arribo 'X''
fx
Llegadas 0 1 2 3 4 5 6
Fx
Poisson 0,0572688 0,1637887 0,2342178 0,2232876 0,1596506 0,0913202 0,0435293
Acumulado 0,0572688 0,2210575 0,4552753 0,6785629 0,8382135 0,9295337 0,9730630
0,9730630
Simulador de Poisson Simulador Si 0 ≤ R ≤ 0.0572688 Si 0.0572688 ≤ R ≤ 0.2210575 Si 0.2210575 ≤ R ≤ 0.4552753 Si 0.4552753 ≤ R ≤ 0.6785629 Si 0.6785629 ≤ R ≤ 0.8382135 Si 0.8382135 ≤ R ≤ 0.9295337 Si 0.9295337 ≤ R ≤ 0.9730630 Si 0.9730630 ≤ R ≤ 1
x = 0 clientes x = 1 clientes x = 2 clientes x = 3 clientes x = 4 clientes x = 5 clientes x = 6 clientes x = 7 clientes
Muestra
Intervalos de tiempo
1
18:00:00
18:05:00
0.436622604
2
0.14274778
1
2
18:05:00
18:10:00
0.652443944
3
0.62879081
3
3
18:10:00
18:15:00
0.450445755
2
0.28287608
2
4
18:15:00
18:20:00
0.693819686
4
0.96749291
6
5
18:20:00
18:25:00
0.22156121
2
0.02131289
0
6
18:25:00
18:30:00
0.187791522
1
0.06909711
1
7
18:30:00
18:35:00
0.592201039
3
0.35620479
2
8
18:35:00
18:40:00
0.282431102
2
0.95323362
6
9
18:40:00
18:45:00
0.950972028
6
0.68897793
4
10
18:45:00
18:50:00
0.421025565
2
0.90187664
5
11
18:50:00
18:55:00
0.976382401
7
0.67916905
4
12
18:55:00
19:00:00
0.160622449
1
0.94012762
6
13
19:00:00
19:05:00
0.393563967
2
0.33079996
2
14
19:05:00
19:10:00
0.882730886
5
0.90316762
5
15
19:10:00
19:15:00
0.037883049
0
0.27812546
2
16
19:15:00
19:20:00
0.57810116
3
0.28922592
2
17
19:20:00
19:25:00
0.486416007
3
0.38815291
2
18
19:25:00
19:30:00
0.325216834
2
0.62364441
3
19
19:30:00
19:35:00
0.861273408
5
0.20695013
1
20
19:35:00
19:40:00
0.406498496
2
0.07564321
1
21
19:40:00
19:45:00
0.046307478
0
0.1476873
1
22
19:45:00
19:50:00
0.182424649
1
0.61229434
3
23
19:50:00
19:55:00
0.99350661
7
0.09090298
1
24
19:55:00
20:00:00
0.477002262
3
0.51596082
3
25
20:00:00
20:05:00
0.911538965
5
0.40836543
2
ARRIBOS
SERVICIOS
Nas
#clientes
Nas
#clientes
CONCLUSIONES Y RECOMENDACIONES
•La investigación de operaciones permite el análisis de la toma de decisiones teniendo en cuenta la escasez de recursos, para determinar cómo se puede optimizar un objetivo definido, como la maximización de los beneficios o la minimización de costes. •La teoría de colas es una herramienta muy importante de la investigación de operaciones pues sus resultados a menudo son aplicables en una amplia variedad de situaciones como: negocios, comercio, industria, ingenierías, transporte y telecomunicaciones. En nuestro caso sirvió para la atención al público de una institución pública. •Concluimos que para la mejor atención del cliente y en el minimarket del “GRIFO
REPSOL” que es tan importante y con muchas sucursales en el país, es importante que su atención al cliente sea lo más optima posible para generar confianza y fidelidad en el cliente.
•Buena capacitación del personal para realizar las labores de atención al cliente en esos módulos, para la atención más rápida del y este regrese satisfecho a su hogar. Tener personal de reserva que pueda suplir inmediatamente a alguna cajera que no asista por razones determinadas. •Por último también es necesario realizar mejoras en el software, que todos los precios y las ofertas de ese momento estén ingresadas en la base de datos, pues en algunos productos aun se buscaba en hojita, lo cual genera una demora. •La actualización continúa de la base de datos tanto para precios, ofertas, etc, para que la atención sea mucho más rápida y los trabajadores puedan desempeñar sus labores sin ningún problema y de manera eficiente.
!GRACIAS!