Problema 1.17 La densidad relativa del petróleo es de 0.907. Determinar su densidad en kg/m3 RESULTADO: 907 kg/m
r
sus tan cia
sust de referencia sus tan cia r x sust de referencia sus tan cia 0,907 x 1000 sus tan cia 907
kg m3
kg m3
Problema 1.21 ¿Cuál será la presión absoluta que deberá existir en el punto D del siguiente sistema para que esté en equilibrio? Datos: En el punto A la presión manométrica es de O, medida al nivel del mar. El líquido tiene una densidad relativa de 0.9. RESULTADO: La presión es de 746.76 mm Hg.
SOLUCION: Densidad relativa:
r
sus tan cia referencia
1
Presión manométrica:
pág. 1
Pmanometrica Pabsoluta Patmosferica Pabsoluta Pmanometrica Patmosferica
2
Ecuación de la presión hidrostática:
P1 P2 g z
3
Datos:
Pmanometrica 0
r 0.9 Patmosferica 760mmHg 101325Pa z 20cm 0.2m m g 9.81 s Calcular la densidad real del líquido en
kg m3
sus tan cia r referencia sus tan cia 0.9 1000
kg kg 900 3 3 m m
Calcular la Presión absoluta que ejerce la atmosfera sobre el punto A:
Pabsoluta Pmanometrica Patmosferica Pabsoluta 0 760mmHg 760mmHg Pabsoluta 760 mmHg
133,343Pa 101340, 68Pa 1 mmHg
Analizando la ecuación (3): La ecuación: P1 P2 g z explica la presión que ejerce el líquido o líquidos sobre un punto más inferior. Reemplazamos todos los datos transformados en unidades del sistema internacional y obtenemos:
pág. 2
PD Patmosferica g z PD 101340, 68 900 9.81 0.2 PD 99574.88Pa 99574.88 Pa
0.007501mmHg 746.91mmHg 1 Pa
Problema 1.25: En una destilería se deben tratar 10000l h medidos a 20C de una mezcla alcohólica que consume 18% en peso de alcohol. ¿Qué cantidad en kg/h de líquido se debe procesar? SOLUCION: Datos:
q 1000 l h
0.96864
g ml
Donde q= caudal r: se obtuvo del manual del ingeniero químico La ecuación del flujo másico es:
m q Operando la ecuación anterior tenemos:
m q l 1 m3 kg 968.64 3 h 1000 l m kg m 9686, 4 3 m
m 10000
PROBLEMA 1.29
pág. 3
Si el vacuometro W marca 180 mmHg, determine las alturas de los líquidos en las ramas de los piezómetros.
SOLUCION: Hacemos una conversión:
kg 1.033 2 1atm m 0.2446 kg W 180mmHg 0.2368atm 760mmHg 1atm m2
2
102 cm kg x 2446 2 m 1m
Para ello debemos determinar las densidades de los siguientes líquidos, por teoría:
kg m3 kg H 2O 998.23 3 m kg oc tan o 730 3 m kg aire 1.2 3 m
CCl 1594 4
Para la altura A:
kg kg kg kg 30 2 10330 2 730 3 x 2 m m m m x 19.52m
2446
Para la altura B:
kg kg kg kg kg 30 2 730 3 7 m 10330 2 1000 3 x 2 m m m m m x 17.76m
2446
Para la altura C:
pág. 4
kg kg kg kg kg kg 30 2 730 3 7m 1000 3 6m 10330 2 1594 3 x 2 m m m m m m x 13.88m
2446
Problema 2.23 Determine la viscosidad de unos gases de combustión formados por 16% de CO2 , 5% de O2 y 79% en N2 en volumen. La temperatura de los gases es de 400°C y la presión es de 1 atm. SOLUCION: Datos: De la gráfica del apéndice XIX a 400°C y a 1 atm tenemos que:
y1CO2 0.16 PM 1 44.01g / mol 1 0.0288s y2O2 0.05 PM 2 16 g / mol 2 0.036s y3 N2 0.79 PM 3 14 g / mol 3 0.031s peso molecular: PM mez PM 1 y1CO2 y2O2 PM 2 y3 N2 PM 3 PM mez 44.01g / mol (0.16) 16 g / mol (0.05) 14 g / mol (0.79) PM mez 18.9016 g / mol viscosidad: PM mez
PM 1 y1CO2
PM mez
44.01(0.16) 16(0.05) 14(0.79) 0.0228 0.036 0.031
PM mez
623.4964 g / mol mez
mez
mez
mez
1
y2O2 PM 2
2
y3 N2 PM 3
3
18.9016 g / mol 0.03s 623.4964 g / mol
Respuesta: la viscosidad de la mezcla es de 0.03 s.
Problema 2.27 Un aceite fluye un régimen laminar a través de una tubería de 2 cm de diámetro interno a razón de 23 l/min. La viscosidad del aceite es de 300 s y su densidad es de 0.933 kg/l. Calcule la caída de
pág. 5
presión por metro de tubo, el esfuerzo cortante en la pared la velocidad en el centro del tubo y la posición radial a la cual la velocidad puntual es igual a la velocidad promedio. SOLUCION: Datos: Datos: Diámetro interno (D),cm Caudal (Ca) , L/min Viscosidad (µ) , s Densidad (ƿ), kg/L Longitud (L),m Gravedad (g) , Ns2/m.s
Conversión de unidades 0.02 m 1.38 m3/h 0.3 kg/m.s 933 kg/ m3 1m 9.81
2 23 300 0.933 1
velocidad : m3 1.38 h
Ca A h(3600s ) (0.02m) 2 4 m 1.22 s
caida de presion kg m 1.22 1m 32 L m.s s P 2 Ns 2 D gc 2 (0.02m) 9.81 kg.m kg kg P 2989.789 2 0.2989 2 m cm 32 0.3
pág. 6
Ya que el fluido es de régimen laminar se puede aplicar la ecuación de poiseuille.
esfuerzo cortante en la pared
PR 2L
kg 0.0099m kg m2 14.92 2 2(1m) m
2984.709
velocidad maxima en el centro del tubo R2 2 1 2 2(1.22) R m 2.44 s
Respuesta: la caída de presión es de 0.2989 kg/cm2 el esfuerzo cortante es de 14.92 kg/m2 la velocidad máxima es 2.44 m/s
Problema 2.31 ¿Qué diámetro de tubería será necesario para transportar 25 l/s de un aceite a 15°C con viscosidad cinemática de 2 x 10-4 m2/s y una densidad de 0.912 kg/l si la caída de la presión máxima permisible en 1000 m de longitud es de 0.25 kg/cm2.
SOLUCION: Datos: Datos: Caudal (Ca) , L/min Viscosidad cinemática (ν) Densidad (ƿ), kg/L Longitud (L),m ∆P Gravedad (g) , Ns2/m.s
pág. 7
25 0.912 1000 0.25
Conversión de unidades 0.025 m3/s 2x10-4 m2/s 912 kg/ m3 1000 m 2500 kg/m2 9.81
viscocidad cinematica 2 kg 4 m 2 10 912 s m3
0.1824
kg 182.4s m.s
diametro de tuberia: D R 2
Ca A R2 A reemplazando :
2
32 L D 2 32 L D2 32 L P 2 4Ca gcP D gc gcP D2
D
4
4Ca 32 L gcP
4
m3 kg 4 0.025 1000m 32 0.1824 s m . s kg 9.81 2500 2 m
D 0.295m 12 pu lg Respuesta: el diámetro es de 0.295 m si se emplea una tubería comercial
Problema 2.35 A través de una tubería horizontal de 8 cm de diámetro interno y 500 m de longitud fluye petróleo crudo ligero cuya densidad es de 0.87. si la caída de presión es de 2.1 kg/cm2 y la velocidad de 0.5 m/s ¿ cual es la viscosidad del aceite? SOLUCION:
Datos: Diámetro (D), cm Densidad (ƿ), kg/L
pág. 8
8 0.87
Conversión de unidades 0.08 m 870 kg/ m3
Longitud (L),m ∆P Velocidad ,m/s Gravedad (g) , Ns2/m.s
2.1
500 m 2100 kg/m2 0.5 m/s 9.81
viscosidad: Ns 2 kg 0.08 m 9.81 2100 32 L D 2 gcP kg.m m2 P 2 m D gc 32 L 32 0.5 500m s kg 0.164808 164.808s m.s 2
Respuesta: la viscosidad es de 164,8 centipoises.
Problema 2.37 Los datos del flujo de agua por un capilar son los siguientes: Longitud = 10.05 m Diámetro interno = 0.0141 cm………0.000141 m T= 10°C Volumen del agua = 13.341 m3 Tiempo de flujo = 35505.75 s ∆P = 385.87 mmHg------ 5245.925993 kg/m2 Determine el valor experimental de la viscosidad del agua en centipoises y compárelo con los valores de las tablas.
pág. 9
SOLUCION:
caudal : Ca
V 13.341m3 m3 0.00037574195 t 35505.75s s
velocidad : D2 0.00000001561m 2 4 m3 0.00037574195 Ca s A 0.00000001561m 2 m 24076.00577 s A
viscosidad: Ns 2 kg 0.000141m 9.81 5245.926 2 2 32 L D gcP kg.m m P 2 m D gc 32 L 32 24076.00577 10.5m s kg 0.164808 164.808s m.s 2
Tareas del Capítulo 1 y 2 de Mecánica de Fluidos CAPÍTULO 1 Problema 1.16 Una esfera de hierro de 50m3 de volumen se introduce en agua. ¿Cuál es el empuje ascendente que recibe? Si la esfera es hueca y pesa 40g, ¿flotará o se irá al fondo? Solución: - Para saber si la esfera flota en el agua, primero se calcula su densidad: m esf V 40 g 1kg 106 cm3 1 m3 esf 1000L 50 cm3 1000 g 1 m3
esf 0,8kg/L
pág. 10
Como la densidad del agua es 1kg/L y la densidad de la esfera hallada es 0,8kg/L entonces se concluye que la esfera flota, por tener una menor densidad esf H 2O -
Para calcular el empuje se aplica el principio de Arquímedes: Empuje H2O Volumen
Empuje 1kg/L 50 103 L Empuje 0,05kg 50g
Resultado: El empuje será de 50 g. La esfera hueca flota. Problema 1.20 El émbolo menor de una prensa hidráulica tiene 10cm2 y el émbolo mayor 300cm2 . Si en el primero
se aplica una fuerza de 50 kg ¿qué fuerza se produce sobre el émbolo mayor? Solución:
P1 P2 F1 F2 A1 A2 F A F2 1 2 A1 50kg 300cm2 10cm2 F2 1500kg
F2
Resultado: Se produce una fuerza de 1500 kg.
Problema 1.24 Por una tubería de 3 pulgadas de diámetro interno y 255 m de longitud viaja un líquido más ligero que el agua, cuya densidad es de 35°Be. Calcular la cantidad de m3 de líquido que se encuentran dentro de la tubería y la masa de ese líquido. Solución: Primero obtenemos la densidad relativa para líquidos más ligeros que el agua mediante la siguiente ecuación:
140 Be 130 r 140 35 130 r
pág. 11
140 35 130 r 0,8484
r
Luego por definición de la densidad relativa, hallamos la densidad de la sustancia.
r
sust sust .ref
sust r sust .ref sust 0,8484 1000
kg m3
kg m3 Luego se halla el volumen de la tubería dado los datos del diámetro D = 3pulg. y su longitud L= 255m.
sust 848, 4
V
D2 L 4
0,0702m V 2
2
(255m)
V 1,1629m 3 Con el dato del volumen hallado, se procede a calcular la masa partiendo de la definición de densidad. m V m V
m 848,4
kg 1,1629m3 3 m
m 986,60kg
Resultados: El volumen contenido en la tubería es de 1.16289 m3 . La masa contenida en la tubería es de 986.717 kg.
Problema 1.28 Un manómetro diferencial se utiliza para medir el cambio de presión causado por una reducción en el área de flujo, tal como se muestra en la figura. Determine la diferencia de presiones entre el punto A y el B. ¿Qué sección tiene la presión más alta? Solución:
pág. 12
De acuerdo a la figura podemos realizar la siguiente igualdad: 5cm hA z hb hA hb z 5cm hA hb 25cm 5cm hA hb 20cm También se puede afirmar que PC = PD, por lo tanto la diferencia de presiones se puede calcular de la siguiente manera PA H 2O hA Hg z H 2O hb ´ PB PA PB Hg z H 2O hb H 2O hA PA PB Hg z H 2O hA hb
kg kg PA PB 13600 3 0, 25m 1000 3 0, 20m m m
PA PB 3200
kg m2
Resultados:
La diferencia de presiones es de 3200 kg / m 2 o de 0.32 kg / m 2 . La presión en el punto A es mayor que en el B.
CAPITULO 2 Problema 2.22 Obtenga la viscosidad del aire líquido a 100°K.
pág. 13
RESULTADO La viscosidad de la mezcla es de 0.1352 s.
Problema 2.26 A través de una tubería de 20 cm de diámetro y 60 m de longitud fluye un líquido. El esfuerzo cortante
en la pared es de 4.6 kg / m 3 . Calcular la fuerza necesaria para que el fluido se ponga en movimiento.
Datos D 20cm L 60m
4.6 kg / m3 Solución: D 2r D r 2 20cm r 10cm 2 Convirtiendo 10cm a metros , entonces r :
r 0.1m
L 60m kg 4.6 2 m F A F 2 rL
kg F 2 0.1m 60m 4.6 2 m F 173.42kg
Resultado:
La fuerza requerida es de 173.32 kg
pág. 14
Problema 2.30 Una mezcla líquida está formada por 50% de octano, 25% de heptano y 25% de hexano en mol a 25°C. ¿Cuál es su viscosidad absoluta y su densidad? Solución: Viscosidad de la mezcla líquida. log mez xoct log oct xhex log hex xhep log hep
1
Se obtienen los datos de viscosidades a 20°C de Lange's Handbook of Chemistry (5-97,5-101), oct 0,546; hep 0, 446; hex 0,313 xoct 0,5;
xhep 0, 25;
xhex 0, 25
Reemplazando los datos en la ecuación (1) para la viscosidad tenemos: log mez 0,5log 0,546 0,25log 0,313 0,25log 0,446
mez 0, 4517 Por lo tanto la viscosidad absoluta de la mezcla es de 0,452. Densidad de la mezcla líquida. xhep x x 1 oct hex mez oct hex hep
2
Se obtienen los datos de densidades a 20°C de Apéndice XX del libro. oct 0,703g/cm3 ; hep 0,684g/cm3 ; hex 0,659g/cm3 xoct 0,5;
xhep 0, 25;
xhex 0, 25
Reemplazando los datos en la ecuación (2) tenemos: 1 0,5 0,25 0,25 3 3 mez 0,703g/cm 0,659g/cm 0,684g/cm3
mez 0,687g/cm3 Por lo tanto la densidad de la mezcla es de 0,687g/cm3. Finalmente para calcular la viscosidad cinemática utilizamos la siguiente ecuación:
v
De los datos ya obtenidos de viscosidad y densidad de la mezcla, reemplazamos y obtenemos la viscosidad cinemática de la mezcla.: 0, 452 102 g/cm.s v 0,656 102 cm 2 /s 0,656cst. 0,689g/cm3
Resultado: La viscosidad absoluta es de 0.4327 y la densidad cinemática es de 0.63914 cst.
Problema 2.34 pág. 15
¿Cuál es la viscosidad de una salmuera de NaCl al 25% y a 30°C?
Salmuera
75% Agua ( A) 25% Sal
( B)
Log mez xA log A xB log B Agua x
NaCl y
10.2
x
13.0
10.2
y 16.6
Las viscosidades a 30°C obtenidas son las siguientes: A 0,85s
B 1,9s Luego reemplazando los valores en la ecuación para hallar la viscosidad de la mezcla, tenemos: log mez 0,75log 0,85 0,25log 1,9 log mez 0,0168
mez 1,039s Resultado: La viscosidad es de 1.85 s. Problema 2.38 Un volumen de heptano fluye a través de un viscosímetro tipo Ostwald en 83.8 s mientras que un volumen igual de agua requiere 142.3 s. Calcular la viscosidad del heptano a 20°C, sabiendo que a esa temperatura las densidades del heptano y del agua son 0.689 y 0.998 kg/l respectivamente, y que la viscosidad del agua a esa temperatura es de 0.01 g/cm.
Datos:
1 83.8s 2 142.3s hep 0.689
pág. 16
kg l
H O 0.998 2
kg l
Solución:
1 11 2 2 2 1 1 1 2 2 2 0.689(83.8s) g 0.01 kg cm 0.998 142.3s l 1 4.065 103
1
Convirtiendo a unidades de s 1 4.065 103 102 1 0.406s
Resultado: La viscosidad es de 0.406 s.
CAPITULO 1: Problema 1.17 La densidad relativa del petróleo es de 0.907. Determinar su densidad en kg/m3. Solución: 1. Datos:
r 0.907 2. Planteamiento:
r
sus tan cia
sus t . referencia
Como: sus t . referencia H 2 0 Entonces:
r
sus tan cia H 0 2
3. Cálculos:
pág. 17
H 0 1000 2
kg m3
sus tan cia r H
20
sus tan cia 0.907 1000 sus tan cia 907
kg m3
kg m3
Resultado: 907 kg/m3 Problema 1.22 Un tanque de almacenamiento contiene petróleo cuya densidad es igual a 22.67°Be. El tanque tiene una altura de 5m y está abierto a la atmosfera cerca de la costa. Si el tanque se llena de petróleo hasta una altura de 3m, ¿Cuál será la presión en el fondo del tanque? Solución: 1. Datos:
H O 1000 kg / m3 2
Condiciones iniciales : Condiciones finales : h 5m h 3m Be 22, 67
P?
2. Planteamiento: 2.1.
Densidad relativa:
º Be
r 2.2.
140
r
sust ref
– 130
r
r
petroleo H O 2
Presión de fondo:
PF Patm petroleo gh
3. Cálculos: 3.1. Densidad relativa:
140 r Be 130 140 r 22, 67 130 r 0,917
pág. 18
140 Be 130
r
petróleo H O 2
0,917
petróleo 1000kg / m3
petróleo 917
kg m3
3.2.
Presión:
Patm 1 atm 1, 033
Kg Kg 10330 2 2 cm m
PF Patm petroleo gh PF 10330
kg kg 917 3 2 m m
PF 10330
kg kg 1 26987,31 2 2 m ms g c
PF 10330
kg kg kg 26987,31 2 2 m m ms kg 9,81 2 s
PF 10330
kg kg 2751 2 2 m m
1m PF 13081 2 m 100 cm kg
PF 1,3081
m 9,81 2 3 m s
2
kg cm 2
Resultado: La presión en el fondo del tanque será de 1.308kg / cm
2
Problema 1.26 Determine la densidad del aire a una presión de 586 mmHg y a una temperatura de 20°C. Solución: 1. Datos:
1, 01325 105 Pa P 586 mmHg 78126,91 Pa 760 mmHg T 20 C 273,15 293,15 K kg aire ? 3 m g Pa m3 R 8.314 M aire 28.96 mol K mol 2. Planteamiento: 2.1. Densidad del aire:
PV nRT m PV RT M
pág. 19
m M P V RT m Como: aire V Entonces:
aire
M P RT
3. Cálculos: 3.1. Densidad del aire:
M P RT g 28.96 78126,91 Pa mol Pa m3 8.314 293,15 K mol K
aire
aire
aire 928.3
g m
aire 0.928
3
1kg 1000 g
kg kg 0.930 3 3 m m
Resultado: La densidad del aire será de 0.9306 kg/m3. Problema 1.30 Encuentre la presión en cada uno de los puntos.
Solución: 1. Datos: patm 1 atm
pág. 20
aceite 1, 204
kg 1000 l kg 1, 204 103 3 3 1m m l
kg 1000 l kg 13, 6 103 3 3 1m m l 2. Planteamiento:
Hg 13, 6
Patm
CCl 1.595 4
kg 1000 l kg 1,595 103 3 3 1m m l
N 1 2 101325 Pa 1 kg 1 atm m 1 atm 1 Pa 9,81N
Patm 10328
Kg m2
Según la tabla de conversiones del apéndice I: Kg Kg 1 atm 1, 033 2 10330 2 cm m 2.1. Presión del punto D:
PD Patm 2.2. Presión del punto F y C:
PF PC Patm Hg ghF
2.3. Presión del punto B y E: En la gráfica añadimos un punto X a la misma altura del punto C , entonces:
PX PC PB PE PX aceite ghX 2.4. Presión del punto A:
PE PA CCl4 ghA
3. Cálculos: 3.1. Presión del punto D:
PD 10330
Kg m2
3.3 Presión del punto F y C:
Para obtener las unidades de presión Kg / m 2 es necesario multiplicar por el factor de conversión 1/ g c : PF PC Patm Hg ghF PF PC 10330
Kg kg m 1 13, 6 103 3 9,81 2 2 m 2 m s gc m
PF PC 10330
kg Kg kg 266832 2 2 m m ms kg 9,81 2 s
PF PC 10330
Kg Kg 27200 2 m2 m
PF PC 37530
3.4 Presión del punto B y E:
pág. 21
Kg m2
PX PC
PX 37530
PB PE PX aceite ghX PB PE 37530
Kg m2
1 gc
kg kg 1, 204 103 2 2 2 m m
PB PE 37530
kg kg 2408 2 2 m m
PB PE 39938
kg m2
3.5 Presión del punto A:
PE PA CCl4 ghA PA PE CCl4 ghA PA 39938
1 gc
kg kg 1,595 103 2 2 2 m m
PA 36748
kg m2
Resultado:
Las presiones son : A 36751 kg / m 2
D 10333 kg / m 2
B 39941 kg / m 2
E 39941 kg / m 2
C 37533 kg / m2
F 37533 kg / m 2
CAPITULO 2: Problema 2.21 ¿Cuál será la velocidad máxima de descarga para régimen laminar de un aceite con viscosidad cinemática de 3.8 104 m2 / s en una tubería de 20 cm de diámetro interno? Solución: 1. Datos:
m2 v 3.8 10 s D 20 cm 0, 2 m 4
2. Planteamiento: pág. 22
Relaminar 2100
Re
D
Como: v Entonces:
Re
D
v
3. Cálculos:
Re.v D
4 2 Re.v 2100 3,8 10 m / s D 0, 2 m
3,99 m / s Resultado: La velocidad máxima de descarga será de 3.99 m/s. Problema 2.24 Calcular la viscosidad del nitrobenceno a 20°C. Solución: 1. Datos:
T 20C M C6 H5 NO2 123,11g / mol
? 2. Planteamiento: Viscosidad por el método de Souders
log(log(10 )) ml 2,9 I M I An Pn m
3. Cálculos: 3.1. Calculamos I usando los valores del apéndice XIII de libro de Antonio Valiente I 6 carbonos 5 hidrógenos
Dióxido de nitrógeno
4 dobles ligaduras
anillo de 6 carbonos
I 6 50.2 5 2.7 80 4 15.5 21.0 I 311 3.2. Hallamos m:
I 311 M 123.11 m 2.526 m
3.3. Hallamos la densidad usando el apéndice V del libro de Antonio Valiente
pág. 23
C H NO 1.203 6
5
2
g cm3
a 20C
3.4. Viscosidad
log(log(10 )) ml 2.9 log(log(10 )) 2.526 1.203 2.9 log(log(10 )) 0.139 log(10 ) 100.139
log(10 ) 1.377
10 10
10 23.8
1.377
2.38 Resultado: La viscosidad por Souders es 2.38 . La viscosidad por nomograma del apéndice XX es 2.2 .
Problema 2.28 Determinar el régimen de flujo de la corriente de un líquido que fluya en el espacio intertubular de un cambiador de calor si el diámetro es de 0.021m, la velocidad del fluido de 0.77m/s, la viscosidad de 1.2 . y la densidad de 1150 kg/m3. Solución: 1. Datos:
D 0.021m u 0.77 m / s 1.2 d 1150kg / m3
2. Planteamiento:
Re
D u
3. Cálculos:
Re
D u
0.021 0.77 1150 1.2 103
Re 15496.25 Es turbulento cuando su Reynolds es mayor a 10 000 Resultado: El régimen de flujo es turbulento.
pág. 24
Problema 2.32 Se sabe que la viscosidad del clorobenceno a 20°C es igual a 0.9 y a 5°C es de 0.6. Aprovechando la ecuación de Andrade, ¿Cuál será el valor de la viscosidad del clorobenceno a 70°C? Solución: 1. Datos:
1 0.9 2 0.6 3 ?
T1 20C 273K T2 50C 323K T3 70C 343K 2. Planteamiento: 2.1. Usamos la ecuación de Andrade
log a
b T
3. Cálculos: 3.1. Calculamos las constantes de Andrade b b log 1 a log(0.9) a T1 273 4.58 102 a
b 273 73( 4.58 102 a) b b 13.42 293a b log(0.6) a 323 2
log 2 a
b T2
b 273
a
13.42 293a 323 13.42 293a 2218 a 323 323( 0.2218 a) b 0.2218 a
Reemplazando b: 71.64 323a 13.42 293a
71.64 13.42 293a 323a 58.22 30a a 1,941 Hallamos b:
b 13.42 293a b 13.42 293(1.941) b 555.29
pág. 25
3.2. Hallamos la viscosidad del clorobenceno a 70°C b 555.29 log a log 1.941 0.322 T 343 100.322
0.47 Resultado: La viscosidad es de 0.47 . Problema 2.36 Dos superficies planas están separadas 25mm, y el espacio entre ellas está lleno de un líquido cuya viscosidad se desea obtener. Si una de las superficies de área igual a 0.4 m2 se mueve a la velocidad es de 0.32m/s al aplicársele una fuerza de 0.512 kg mientras la otra placa permanece inmóvil, ¿Cuál será la viscosidad del fluido? Solución: 1. Datos:
A 0.4m2 F 0.512kg u 0.32m / s y 25mm 0.025m 2. Planteamiento:
du dy
3. Cálculos:
F du A dy 0.512kg 0.32ms 1 0.025m 0.4m 2 2 1.28kgm (12.8s 1 ) 1.28kgm 2 12.8s 1
0.1
kgs m2
Convertimos la viscosidad de
pág. 26
kgs a : m2
F du A dy
kgs 9.81N 1kgms 2 1000 g 1m 1 poise 1 0.1 2 1 1 1N 1kg 100cm 1gcm s 1 poise m 1kg
981 Resultado: La viscosidad es de 981 .
PROBLEMAS PROPUESTOS: CAPÍTULOS 1 Y 2 Problema 1.19: Calcular la densidad de un gas que tiene la siguiente composición: 50% mol de hidrogeno; 40% mol de monóxido de carbono; 5% mol de nitrógeno y 5% mol de dióxido de carbono; a 90°C y 1,2 atm Solución:
Datos:
P 1.2atm T 90º C 363.15K
H 50%mol CO 40%mol Composición: CO2 5%mol N 5%mol
-1º se halla la densidad para cada sustancia pura con la siguiente ecuación:
PM R T
H 0, 0402kg / m3 Obteniendo:
CO 1,1270kg / m3 CO 1, 7709kg / m3 2
N 0,5635kg / m3 -2º se aplica la siguiente ecuación:
1
mezcla
X1
1
X2
2
X3
3
X4
4
Obteniendo como respuesta: mezcla 0.0775kg / m3 Problema 1.23: Un gas proveniente de la chimenea de una caldera tiene la siguiente composición en volumen: CO2 CO O2 pág. 27
12.4% 1.2% 5.4%
N2
81.0%
Calcule la densidad de esta mezcla a 740 mm Hg y a 315°C. Solución: Primero obtenemos datos de los gases (apéndice VIII) para poder trabajar, peso molecular, sacamos los valores críticos de las tablas del índice y los porcentajes los dividimos entre 100 Compuestos
PM
Tc °C+273°K
Pc atm
y
CO2 CO O2 N2
44 28 36 28
31,1+273= 304,1 -139+273= 134 -118,8+273= 154,8 -174,1+273= 99,05
73 35 49,7 33,5
0.124 0,0012 0,054 0,81 1
Convertimos de:
740 mmHg
1atm 0,97atm 760 mmHg
Condiciones pseudo críticas: Multiplicamos cada fracción molar x su respectivo peso molecular:
PM 0,124 44 0, 0012 28 0, 054 36 0,81 28 PM 30,1136 g / mol Multiplicamos cada fracción molar por su respectiva Presión crítica
P´c 0,124 73 0, 0012 35 0, 054 49, 7 0,81 33,5 P´c 38,9128atm Multiplicamos cada fracción molar por su respectiva Temperatura crítica
T ´c 0,124 304,1 0, 0012 134 0, 054 154,8 0,81 99, 05 T ´c 126, 4589 K Obtenemos la Presión reducida reemplazando valores:
P P´c 0,97 atm P´r 0, 025 38,9128 atm P´r
pág. 28
Obtenemos la Temperatura reducida reemplazando valores:
T T´c 315 273 K T´r 4, 65 126, 4589 T´r
Diagrama Z=1
Moles de gas=
100 Kg 30,1136 Kg / mol
3,32mol
Volumen del gas:
V 1 0,082 3,32 315 273 160,08 L Densidad del gas:
m 100 Kg Kg 0, 6247 V 160, 08L L
RESULTADOS La densidad del gas es 0.6247 kg/L
Problema 1.27: Un tanque cerrado está parcialmente ocupado por tetracloruro de carbono. La presión sobre la superficie del líquido es de 1,558 kg/l. El tanque es cilíndrico y tiene una altura total de 10m. A la mitad de la altura tiene una boquilla donde se alimenta el tetracloruro y a 1m de la base se encuentra la descarga. El medidor de nivel del tanque marca un contenido equivalente a 8m de altura de líquido. Calcule la presión a que se debe de inyectar el tetracloruro de carbono y la presión a que se descarga.
liquido : CCl4 Datos: Pl 0, 703kg / cm 2
l 1,558kg / l 1,558 103 kg / cm3 1º para P1 (entrada):
pág. 29
P1 Pl l h P1 0, 703kg / cm 2 1,558 103 kg / cm3 300cm P1 1.1704kg / cm 2 2º para P2 (salida):
P2 P1 l h P2 1,1704kg / cm 2 1,558 103 kg / cm3 400cm P2 1, 7936kg / cm 2
Problema 1.30: Encuentre la presión en cada uno de los puntos.
Patm = 1 atm ρ Hg = 13.6 kg/l ρ aceite = 1.204 kg/l ρ ccl4 = 1.595 kg/l Solución: Primero hacemos balance de fuerzas:
pág. 30
PD Patm 10332, 27 Kg / m2 2 PD 1 atm 10332, 27 Kg / m 1 atm
PF PD Hg H D H F Kg 1000 L PF 10332, 27 Kg / m2 13, 6 2m 37532, 27 Kg / m2 3 L m PF PC PB PC ACITE ( H C H B ) Kg 1000 L 2 PB 37532, 27 Kg / m 2 1, 204 2m 39940, 27 Kg / m 3 L m PB PE
PA PE CCL4 ( PA PE ) Kg 1000 L 2 PA 39940, 27 1,595 2 36750.27 Kg / m 3 L m
Problema 2.25: Por una tubería de 5 cm de diámetro interno fluye agua. La caída de presión es de 50 Kg m2 por metro de longitud. Construya el perfil de velocidad en los diferentes puntos de la tubería si la temperatura es de 20°C. Solución: Datos: T=20°C D=5 cm = 0,05m ρ= 1000Kg/m3 μ=1x10-3Kg/m.s ∆P=50Kg/m2 R2=2,5 Utilizamos la ecuación de caída de presión:
P
2L u R2
Acomodamos la ecuación:
pág. 31
Kg 2 0, 05m 2 P R m u 62,5Kg / ms 2 L 3 Kg 2 1m 110 s 2
50
Al tener el valor de u reemplazamos en la ecuación de perfil de velocidades
r2 u 2u 1 2 R Mediante la ecuación de Poiseuille se obtienen los datos de r y u r 0 ±0,25 ±0,5 ±0,75 ±1 ±1,5 ±2 ±2,5
u 125 123,75 120 113,75 105 80 45 0
Problema 2.29: Un cilindro de 10 cm de altura y 0,15m de diámetro gira dentro de otro de 0,152m de diámetro. Los dos cilindros forman parte de un viscosímetro. ¿Cuál será la viscosidad del líquido que produce un torque de 0,1kg-f.m cuando el cilindro rota a 90 RPM?
d 0,15m D 0,152m Datos: h 0,1m T 1,1kg .m RPM 90 2 d RPM 2 (0.15) 90 1, 4137m / s 60 60 dy (0,152 0,15) 7, 0736kg / m2 du 1, 4137 T 0,1 7, 0736kg / m2 2 2 2 r L 2 (0,15) (0,1) dy 7, 0736 1, 4147 103 0, 01kgs / m 2 du u
pág. 32
0, 01kgs / m2 9,81
N 1kg.m / s 2 1000 g 1m 1 poise 1 1N 1kg 100cm 1g / cm.s 1 poise kg
98,1682 Problema 2.33: ¿Cuál es la viscosidad del vapor de agua a 300°C y 10 atm absolutos de presión? Este problema se puede resolver recurriendo al apéndice XVII, como la las unidades son distintas a las gráficas tenemos que convertir:
9 F C 32 reemplazamos valores 5 9 F 300C 32 572 F 5 14, 696 Psig P 10 atm 146,96Psig 1 atm Luego trazamos la gráfica con los valores recientes y obtenemos la viscosidad
RESULTADO La viscosidad es de 0.0215 s.
Problema 2.37: Los datos de flujo de agua por un capilar son los siguientes: Longitud = 10,05m
pág. 33
Diámetro interno = 0,0141cm T = 10°C Volumen del agua = 13.341 m3 Tiempo de flujo = 35505,75s P = 385.87 mmHg Determine el valor experimental de la viscosidad del agua en centipoise () y compárelo con los valores de las tablas
L 10, 05m
Datos:
d 1, 41104 m T 10º C 283,15K V 13,341m3 t 35505, 75s P 385,87mmHg 51453, 06 Pa
1º hallamos la velocidad promedio: uˆ
L 10, 05m 2,83 104 m / s t 35505, 75s
2º hallamos la viscosidad con la siguiente formula:
P d 2 gc 32 uˆ L 0,1102kg / m.s
1000 g 1m 1kg 100cm 100 1,102 poise 1 poise 110, 2
0,1102kg / m.s
pág. 34
P d 2 g c 32 uˆ L
CAPITULO 1: ESTÁTICA DE FLUIDOS Problema 1.16 Una esfera de hierro de 50cm3 volumen se introduce en agua. ¿Cuál es el empuje ascendente que recibe? Si la esfera es hueca y pesa 40g, ¿flotará o se irá al fondo? SOLUCIÓN: Datos:
Vesfera 50cm3 mesfera 40 g Para saber si la esfera flota en el agua, primero se calcula su densidad: m esf V 40 g 1kg 106 cm3 1 m3 esf 1000L 50 cm3 1000 g 1 m3
esf 0,8kg/L Como la densidad del agua es 1kg/L y la densidad de la esfera hallada es 0,8kg/L entonces se concluye que la esfera flota, por tener una menor densidad esf H 2O . Para calcular el empuje se aplica el principio de Arquímedes: Empuje H2O Volumen
Empuje 1kg/L 50 103 L Empuje 0,05 kg 50g
Respuesta: Recibe un empuje de 50g ; como el empuje es mayor al peso de la esfera, la esfera flotará. Problema 1.21 ¿Cuál será la presión absoluta que deberá existir en el punto D del siguiente sistema para que esté en equilibrio? Datos: En el punto A la presión manométrica es de 0, medida al nivel del mar. El líquido tiene una densidad relativa de 0,9.
SOLUCIÓN: pág. 35
Datos:
PA 1atm 760mmHg
f 0,9g/cm3 900kg/m3 h 20cm 0,2m g 9,81m/s 2 Como la presión en el punto A y el punto C son iguales, entonces:
PA PD g f h Despejando D:
PD PA g f h Resolviendo primero g f h :
g f h 9,81m/s 2 900kg/m3 0, 2m g f h 1765,8 Pa
1atm 760mmHg × 13, 24mmHg 101325 Pa 1atm
Remplazando en la ecuación:
PD 760mmHg -13,24mmHg PD 746,76mmHg Respuesta: La presión en el punto D es de 746, 76 mmHg. Problema 1.26 Determine la densidad del aire a una presión de 586 mm de Hg y a una temperatura de 20ªC. SOLUCIÓN: Datos:
P 586 mmHg
1atm 0, 7711atm 760 mmHg
T 20o C 293, 73K R 0, 08206L atm/ K mol De tablas se sabe que el peso molecular del aire es de 28,97g/mol Para resolver el problema se utilizara la ecuación de gases reales:
pág. 36
PV nRT mRT PV M mRT PM PM RT V RT Remplazando:
PM RT
0, 7711atm 28,97 g / mol
0, 08206 L atm / K mol 293,15 K
0,9286
g 1kg 1000 L kg × × 0,9286 3 3 m m L 1000 g
Respuesta: la densidad del aire es de 0,9286kg/m3 Problema 1.29 Si el vacuómetro w marca 180 mm de Hg. Determine las alturas de los líquidos en las ramas de los piezómetros.
3m
SOLUCIÓN: Datos:
Patm 1atm 101325Pa Pw 180mmHg 23998Pa Del apéndice V: H 2O 1000kg/m3 aire 1,2 kg/m3
pág. 37
r C8 0, 703 C8 703kg/m3 r CCl4 1, 6 CCl4 1600kg/m3
Hallando la altura A:
PL Pw gh aire
PL 23998Pa 9,81m / s 2 1, 2kg / m3 25m PL 23998Pa 294,3Pa PL 24292,3Pa
PL Patm ghA octano P P hZ atm L g octano 101325Pa 24292,3Pa hZ 2 3 9,81m / s 703kg / m hZ 11,16m Hallando la altura B:
PM Pw g haire aire hoc tan o oc tan o
PM 23998Pa 9,81m / s 2 1, 2kg / m3 25m 703kg / m3 7 m PM 23998Pa 48569,31Pa PM 72567,31
PL Patm ghB agua P P hx atm L g octano 101325Pa 72567.2Pa hx 2 3 9,81m / s 1000kg / m hx 2,9314m Hallando la altura C:
PM Pw g haire aire hoc tan o oc tan o hagua agua PL 23998Pa 9,81m / s 2 1, 2kg / m3 25m 703kg / m3 7 m 1000kg / m3 6 PL 23998Pa 107429,3Pa PL 131427,3Pa
pág. 38
PL Patm ghA octano P P hY atm L g octano 101325Pa 131427,3Pa hY 2 3 9,81m / s 1600kg / m hY 1,91m
CAPITULO 2: DINÁMICA DE FLUIDOS Problema 2.21 ¿Cuál será la velocidad máxima de descarga para régimen laminar de un aceite con viscosidad cinemática de 3,8 104 m2 /s en una tubería de 20 cm de diámetro interno? SOLUCIÓN: Datos: Sabiendo que el flujo laminar termina cuando Reynols es igual a 2100, entonces :
Re 2100 v 3,8 104 m2 /s D = 20 cm = 0,2 m Despejando y resolviendo la ecuación de Reynols:
Re
D
Re Re v D D 2100 3,8 104 m 2 /s 0,2 m 3,99m/s
La velocidad máxima alcanzada es de 3,99 m/s. Problema 2.24 Calcular la viscosidad del nitrobenceno a 20ªC SOLUCIÓN: a) Datos: M 123,1g / mol De tablas a 20°C:
pág. 39
r20 C 1, 203 20 C 1, 203g / cm3 0
0
Aplicando la siguiente ecuación:
log log 10 m 2,9 Calculando m:
m
I M
Sabiendo que I
An Pn :
I 6 carbonos +5 hidrogenos +1grupo nitro + 4 dobles ligaduras + anillo 6 carbonos I 6 50, 2 5 2, 7 80 4 15,5 21 I 311, 7 Remplazando en m el peso molecular y I:
m
311, 7 2,532 123,1
Remplazando en la ecuación (1):
log log 10 m 2,9 log log 10 2,532 1, 20 2,9 log 10 100,1385
101,3761 2,38 b) Datos:
T 293,15 K TC 720 K Usando la Ecuación de Morris log
Tr
pág. 40
1 L J 1 Tr
293,15K 0, 40715 720 K
En la Tabla 1.4-2 (Bird, fenómenos del transporte, segunda edición, 2006) se encuentra para las derivados bencénicos: 0, 0895; obteniéndose el valor del parámetro estructural J, mediante la ecuación: 1/ 2
n J 0, 0577 bi ni i 1 Con los valores:
Grupo NO2: junto a un anillo
bi 0,4170
C6H4, anillo bencénico
0,3558
J 0, 0577 0, 4170 0,3558
1/ 2
0,91132
Sustituyendo:
log log
L 0, 0895
L 0, 0895
1 0,91132 1 0, 40715 1,3270
L 0, 0895 101,3270 L 1,9 La viscosidad del nitrobenceno es 1,9 centipoices.
Problema 2.28 Determinar el régimen de flujo de corriente de un líquido que fluya en el espacio intertubular de un cambiador de calor si el diámetro es de 0,021 m, la velocidad del fluido de 0,77m/s, la viscosidad de 1,2 y la densidad de 1150 kg/m3. SOLUCIÓN: Datos:
D = 0,021 m 0, 77m/s
1150kg/m3 1, 2
102 g / cm s 1
kg 100 cm 1, 2 103 kg/m s 1m 1000 g
Para determinar el régimen de flujo se usa la siguiente ecuación:
Re
D
0, 021m 0, 77m 2 /s 1150kg/m3 Re 1, 2 103 kg/m s Re 15496, 25 > 2100
pág. 41
Respuesta: El flujo es turbulento, porque el Reynols es mayor a 2100. Problema 2.33 ¿Cuál es la viscosidad de vapor de agua a 300°C y 10 atm absolutos de presión? SOLUCIÓN: Datos:
T 3000 C 573,15 K P 10atm De tabla 1.312 (Bird, fenómenos del transporte, segunda edición, 2006): o
_
p 1,85 debyes; 2,52 A; / k 775 K; 1
26,69
TM
1
2 v
La temperatura adimensional T*, será: _
kT
573,15 0, 7395 775 Sustituida en la ecuación de Neufeld conduce a: T *
1,16145 0,52487 2,16178 2,43787T * * T *0,14874 e0,77327T e 1,16145 0,52487 2,16178 r L.J . 0,77320,7395 2,437870,7395 1,8674 0,14874 e e 0,7395 Como el vapor de H2O es un gas polar, se usa la ecuación de stockmayer: Stockmayer Lennard-Jones 0,2 2 / T * Obteniendose: 2 0, 21 r S. 1,8674 2,1379 0,7395 y sustituyendo resulta: 573,1518 26, 69 199, 67 p 2 2,52 2,1379
199, 67 μp
2
3
0, 019967 0, 02 104 μp
Problema 2.38 Un volumen de heptano fluye a través de un viscosímetro tipo Ostwald en 83.8 s mientras que un volumen igual de agua requiere 142.3 s. Calcular la viscosidad del heptano a 20°C, sabiendo que a esa temperatura las densidades del heptano y del agua son 0.689 y 0.998 kg/l respectivamente, y que la viscosidad del agua a esa temperatura es de 0.01 g/cm.
pág. 42
Datos:
1 83.8s 2 142.3s kg l kg 0.998 l
hep 0.689
H O 2
Solución:
1 11 2 2 2 1 1 1 2 2 2 kg (83.8 s ) l 1 kg 0.998 142.3 s l g 1 4.065 103 cm s 0.689
g 0.01 cm s
Convirtiendo a unidades de s:
1 4.065 103 102 1 0.406s Resultado: La viscosidad es de 0.406 s.
pág. 43