1.
F´ ormulas de Integraci´ on Inmediata
Z 1.
dx = x + c , Z
2.
Z kdx = k
dx ,
Z 3.
Z kf (x)dx = k
f (x)dx ,
Z 4.
Z [f1 (x) + f2 (x) + ... + fn (x)] = xn dx =
Z
dx dx = ln |x| + c; x 6= 0 , x
Z
ex dx = ex + c ,
Z
ax dx =
6.
7.
8.
f1 (x)dx +
Z f2 (x)dx + ... +
xn+1 + c; n 6= −1; nQ , n+1
Z 5.
Z
ax + c; a > 0 , ln a
Z sin(x)dx = −cos(x) + c ,
9. Z 10.
cos(x)dx = sin(x) + c , Z
π sec2 (x)dx = tg(x) + c; x 6= (2n + 1) ; nZ , 2
Z
csc2 (x)dx = −ctg(x) + c; x 6= nπ; nZ ,
Z
π sec(x).tg(x)dx = sec(x) + c; x 6= (2n + 1) ; nZ , 2
11.
12.
13. Z
csc(x).ctg(x)dx = −csc(x) + c; x 6= nπ; nZ ,
14. Z 15.
π tg(x)dx = − ln |cos(x)| + c; x 6= (2n + 1) ; nZ , 2
Z ctg(x)dx = ln | sin(x)| + c; x 6= nπ ,
16. Z 17.
π sec(x)dx = ln |sec(x) + tan(x)| + c; x 6= (2n + 1) ; nZ , 2
Z 18.
csc(x)dx = ln |csc(x) − ctg(x)| + c; x 6= nπ; nZ ,
1
fn (x)dx ,
Z
x dx 1 = arctg +c , x2 + a2 a a
Z
dx 1 x−a = ln x+a + c; |x| > a; a > 0 , x2 − a2 2a
19.
20. Z 21.
a2 Z
22. Z 23. Z 24.
dx 1 x+a = ln x−a + c; |x| < a; a > 0 , 2 −x 2a
√
p dx = ln|x + x2 + a2 | + c , x2 + a2
√
p dx = ln|x + x2 − a2 | + c , x2 − a2
√
x dx = arcsen +c , a a2 − x2
Z p p xp 2 a2 25. x2 + a2 .dx = x + a2 + ln|x + x2 + a2 | + c , 2 2 Z p p xp 2 a2 26. x2 − a2 .dx = x − a2 − ln|x + x2 − a2 | + c , 2 2 Z p x xp 2 a2 27. a2 − x2 .dx = a − x2 + arcsen +c , 2 2 a
2