UNIVERSIDAD POLITÉCNICA SALESIANA SEDE CUENCA
FACULTAD DE INGENIERÍAS
CARRERA DE INGENIERÍA MECÁNICA AUTOMOTRIZ
Trabajo final de grado previo a la obtención del Título de Ingeniero Mecánico Automotriz
TEMA: COMPENDIO DEL SISTEMA OBDII
AUTOR: ALEXANDER ABRIGO MALDONADO
DIRECTOR: ING. PAÚL MÉNDEZ
Cuenca, 2007
i
DECLARATORIA DE RESPONSABILIDAD
El presente trabajo es un compendio de información a cargo del autor J. Alexander Abrigo Maldonado.
Todo el contenido del presente trabajo es la unión de varios conceptos de diversos autores los cuales obtuve de dos formas: La primera fue la información que nos fue brindada por los tutores de nuestro Curso de Graduación de Ingeniería Mecánica Automotriz, La segunda fue la consulta realizada en la web, las páginas están señaladas en la Bibliografía.
Con lo dicho anteriormente dejo en claro que respeto la propiedad intelectual de los autores de los conceptos que manejo en mi trabajo, y que el mismo no es más que un sumario sintético de información acerca del tema OBDII.
Cuenca, Noviembre 16 de 2007.
Firma: __________________________
Autor: J. Alexander Abrigo Maldonado CI: 1104186471 …………………….....
ii
OFICIO DEL DIRECTOR DEL TRABAJO FINAL
Este trabajo estuvo dirigido bajo mi tutoría, el cual fue hecho con responsabilidad por el sr. Alexander Abrigo.
Atentamente,
_______________________ Ing. Paúl Méndez
iii
AGRADECIMIENTOS
Agradezco a mis padres por ser la piedra angular de mi vida, por todo el esfuerzo que han realizado para darme lo mejor, y por hacerme ver que las lecciones que me da la vida son para hacerme más sabio y fuerte, gracias.……………..…
iv
DEDICATORIA
Este trabajo está dedicado para ti mi Bachita que eres la luz de mi vida y mi gran maestra en la sabiduría de la vida...…………………………..
Gracias por todo lo que has hecho por mí...….……………..
v
ÍNDICE EXTRACTO .............................................................................................................. 1
DESARROLLO DEL TRABAJO ........................................................................... 3
CAPÍTULO I:
Antecedentes .................................................................................. 4
1.1. Principios de la contaminación automovilística ............................................ 5 1.2. Formas de contaminación producidas por un vehículo.................................. 5 1.3. Origen del sistema OBDII ............................................................................. 7 Decreto Federal Sobre Aire Limpio ................................................................ 7 Agencia de Protección Ambiental (EPA) ....................................................... 7 Comisión de Recursos del aire de California (CARB) ................................... 9 Puesta en marcha para la aplicación del sistema ........................................... 10
CAPÍTULO II: Descripción del sistema .............................................................. 12 2.1. Definición .................................................................................................... 13 2.2. Terminología y Simbología ......................................................................... 13 2.3. Objetivos y Normativas ............................................................................... 17 Objetivos ....................................................................................................... 17 Normativa...................................................................................................... 18 2.4. Comparación entre el sistema OBD2 y el sistema previo OBD .................. 19 2.5. Elementos que intervienen en la diagnosis del estado del vehículo ............ 21 Luz indicadora de mal funcionamiento “MIL” (Malfuntion Indicator Light) ... 22 Códigos de diagnóstico de falla “DTC” (Diagnostic Trouble Code) ............ 23 Códigos Continuos .................................................................................. 25 Códigos Pendientes ................................................................................. 26 Códigos de Memoria ............................................................................... 26 Herramienta portátil de diagnóstico .............................................................. 27 Conector de Diagnóstico estándar “DLC” (Diagnostic link conector) ......... 28 Ubicación del conector DLC................................................................... 31 Función de los pines del conector DLC .................................................. 32 vi
CAPÍTULO III: Monitoreos y Protocolos en que se basan ................................. 34 3.1. Monitoreos. .................................................................................................. 35 Monitoreos Continuos ................................................................................... 35 Monitoreo exhaustivo de componentes ................................................... 36 Monitoreo de fallo de encendido............................................................. 39 Monitoreo del sistema de combustible .................................................... 40 Monitoreos Interrumpidos............................................................................. 41 Monitoreo de sensor de oxígeno ............................................................. 41 Monitoreo del calentador del sensor de oxígeno..................................... 43 Monitoreo del catalizador ....................................................................... 45 Monitoreo del climatizador del catalizador ............................................. 48 Monitoreo del sistema EGR .................................................................... 49 Monitoreo del sistema de aire secundario ............................................... 54 Monitoreo del aire acondicionado (A/C) ................................................ 54 Monitoreo del sistema EVAP.................................................................. 55 Monitoreo del control de pérdidas en el circuito de gases de combustible ....................................................................................................... 57 Protocolos de Comunicación. ............................................................................. 61
CAPÍTULO IV: Evolución hacia OBDIII ........................................................... 69 4.1. Definición de OBDIII .................................................................................. 70 4.2. Ventajas de OBDIII ..................................................................................... 70 4.3. Tecnologías que se usarán en OBDIII ......................................................... 72 CONCLUSIONES ................................................................................................... 73
RECOMENDACIONES ......................................................................................... 75
BIBLIOGRAFÍA ..................................................................................................... 80
ANEXOS .................................................................................................................. 81 Apartado A ................................................................................................................... 82 Apartado B .................................................................................................................... 84 vii
EXTRACTO:
En este texto se pretende realizar un compendio de información acerca del sistema OBDII, para lo cual se respeta los derechos intelectuales de los autores de dicha información, haciendo referencia a los mismos en la bibliografía y referencias en internet.
El sistema OBDII se implementó en USA desde 1996 en autos a gasolina y desde 1997 para vehículos a diesel, esto se dio por los altos niveles de contaminación que estaban emitiendo los vehículos con motores térmicos, y el riesgo para la salud de los habitantes que esto significaba.
OBDII son las siglas de la denominación en inglés para Diagnósticos de a Bordo Segunda Generación, esta evolución vino para lograr estandarizar los códigos de falla , términos y símbolos, que debían leerse(La lectura que debe mostrar la pantalla de un scanner, lector de códigos o el tablero de instrumentos) cuando algún sistema que controle los niveles de contaminación estuviera fallando, y estos códigos se den a través de un control continuo o intermitente que se dé a los diferentes sistemas que se encuentran en el vehículo en los cuales se pueda inspeccionar el buen funcionamiento del vehículo y por ende que esté dentro de los requerimientos de mínima contaminación posible, llamando a estos controles monitoreos y dando una especificaciones para los mismos.
Siendo necesarios unos elementos para estos monitoreos como son una luz indicadora de un mal funcionamiento, unos códigos de falla y un conector de diagnóstico estandarizados y finalmente un scanner o lector de códigos (estos deberán cumplir con unos requisitos mínimos, ciertas restricciones son necesarias como el no poder modificar señales en el motor que puedan afectar el rendimiento anticontaminante del motor), los cuales nos permiten comunicarnos con la central del vehículo la cual nos advierte de algún mal funcionamiento en el mismo. viii
Si comparamos este sistema con su antecesor podremos notar una amplia ventaja del OBDII sobre el OBD ya que en el primero no todos tenían a la información en cuanto a los elementos hoy en día se encuentran estandarizados, y se controlaba muchos menos sistemas que en el OBDII.
Para lograr la estandarización de los diferentes aspectos antes mencionados, este sistema se basa en unos protocolos de la ISO y de la SAE que rigen la estructura de cómo deben ser los monitoreos, los niveles máximos de contaminación permitidos, los conectores, los códigos de falla, el equipo de diagnóstico, la terminología y simbología usadas para la evaluación y puesta en marcha de los vehículos OBDII.
La evolución que le espera a este sistema, los diagnósticos de a bordo tercera generación OBDIII, son las comunicaciones satelitales que le permitirán al dueño del vehículo estar en o con la casa constructora, que estará monitoreando el desempeño del automóvil vía satélite, y deberán brindarle la información para poder arreglar el fallo si el daño es algo simple que el mismo pueda realizar sin necesidades de conocimientos técnicos. La gran desventaja de este sistema no tiene que ver con la parte tecnológica sino con la parte humana ya que se corre el riesgo de violar el derecho a la privacidad de los s de automóviles fabricados bajo los requerimientos del sistema OBDIII.
ix
DESARROLLO DEL TRABAJO
CAPÍTULO I: Antecedentes.
1.1. Principios
de
la
contaminación
automovilística.
1.3.1. Decreto Federal Sobre Aire Limpio
1.3.2. Agencia de Protección Ambiental (EPA).
1.2. Formas de contaminación producidas por un vehículo. 1.3. Origen del sistema OBDII.
1.3.3. Comisión de Recursos del Aire de California(CARB)
1.3.4. Puesta en marcha para la aplicación del sistema.
1.1. Principios de la contaminación Automovilística.
Hace aproximadamente unos 329 años, en 1678 ya se diseñó un motor de combustión interna, el diseño estuvo a cargo de Christian Huygens, este nunca se construyo.
Para 1805 se construyo un vehículo automotor, esto a cargo del suizo Isaac de Rivaz; luego de 58 años en 1863 el francés E. Lenoir fabricó un automóvil que funcionaba a base de gas del alumbrado; 1866 es el año en que Langen y Otto desarrollan un motor a gas, y 10años mas tarde en 1886 Otto construye el motor que sería la piedra angular para la evolución de los motores de combustión interna hasta los de nuestro tiempo: el motor de combustión interna de cuatro cilindros.
A mediados de la década de 1880 se comenzaron a fabricar vehículos con motores de combustión interna que fueran eficaces por lo menos medianamente; entre 1885 y 1887 se produjo la unión del motor y el vehículo para convertirse en uno solo, esto estuvo a cargo de Benz y Daimler.
Ahora bien, en Estados Unidos de Norteamérica también se empezó por esta novedosa forma de transporte, para 1891 J. W. Lambert construyó el primer vehículo fabricado en este país; dos años más tarde en 1893 se crea un prototipo a cargo de los hermanos Charles y Frank Duryea, los cuales en 1895 iniciaron la primera empresa automovilística de este país; también siguieron con este avance en la automoción Elwood Haynes, Alexander Winton y Henry Ford en esta misma década.
Desde ese entonces esta industria ha crecido enormemente al recorrer de los años, bastará con decir que para inicios del siglo XX Benz afirmaba haber introducido a las calles 2500 automóviles en Europa.
1.2. Formas de contaminación producidas por un vehículo Como se explica en el subcapítulo anterior desde hace más de cien años se comenzó con una industria que a través del motor de combustión interna le ha permitido a la
humanidadd grandes avances en la in ndustria enn general, siendo la l parte automovillística la dee nuestro intterés y actu ualmente es la causantee de la quin nta parte de la contaaminación mundial. m
mina un vehhículo modeerno? Para contestar c Pero, ¿cuááles son las formas en que contam esta preguunta nos valdremos v d una figu de ura para quue la referencia al lu ugar que mencionem mos se tom me como ejeemplo ya qu ue la posicióón de los m mismos pued de variar según el tipo de vehíículo y el faabricante deel mismo, siendo s estoss lugares en n los que se ubican el motor, ell tanque de combustiblee y el tubo de d escape.
Como se puede p obseervar en la figura, f y dee la deduccción obtenidda de los ellementos antes menncionados podemos p c conocer las tres form mas distintass que un vehículo v contaminaa, esta se daa por: Gaases de cárteer y otros, Evvaporación de d combustiible y Gaases de escaape.
S maggnético, Ing Vicente Ceelani, Cursoo de Graduación 2007 Fuente: Soporte
A diario creemos c quee la única foorma en quee contaminaamos con nuuestros vehíículos es a través de los gasses de esccape, pero la mayor contaminacción se daa por la
evaporación de combustible del tanque de combustible, valga la redundancia, y otra fuente grande de contaminación son los gases de cárter y otros (dentro de otros podemos destacar los gases combustionados que salen por el motor cuando este no tiene una buena estanqueidad y la evaporación de combustible que se da por el mal sellado de los elementos de alimentación de combustible en el motor o desde el tanque hasta este).
Los vehículos que quisieran aprobar los estándares que exigía la reducción de emisiones gaseosas del vehículo hacia el medio ambiente deberían poder monitorear todas estas formas de contaminación permitiendo su revisión en el momento en que uno desee, y la disminución indiscutible de los niveles de contaminación que se tenía hasta ese entonces.
1.3. Origen del sistema OBDII.
1.3.1. Decreto Federal sobre Aire Limpio. Con el primer Decreto sobre Aire Limpio en 1963, el gobierno federal de los Estados Unidos De Norteamérica comenzó a aprobar legislaciones en un esfuerzo por mejorar la calidad del aire. Las Enmiendas de 1970 realizadas al Decreto sobre Aire Limpio, formaron la Agencia de protección Ambiental (Environmental Protection Agency - EPA) y dieron a dicha agencia una amplia autoridad para regular la polución vehicular. Responsabilidades específicas para la reducción de emisión de gases se fijaron tanto para el gobierno como para la industria privada. Desde ese entonces, las normas dictadas por la EPA han sido cada vez más estrictas.
1.3.2. Agencia de Protección Ambiental (EPA). La EPA dicta normas dentro de límites aceptables, con respecto a las emisiones de gas vehicular. Sus directivas señalan que todo vehículo debe reducir a niveles aceptables las emisiones de ciertos gases contaminantes y altamente nocivos. La
EPA ha dictado regulaciones para varios sistemas automotrices a lo largo de los años. A continuación se enumera una lista de normas sobre emisiones, desde 1963:
AÑO LEGISLACIÓN 1963
Primer decreto sobre Aire Limpio aprobado como ley.
1970
Enmienda del Decreto sobre Aire Limpio.
1970
Formación de la Agencia de Protección al Medio Ambiente.
1971
Promulgación de normas sobre emisiones evaporativas.
1972
Introducción al Primer Programa de Inspección y mantenimiento.
1973
Promulgación de normas sobre NOx de combustión.
1974
Introducción del primer convertidor catalítico.
1989
Promulgación de los niveles de volatilidad del combustible.
1990
Enmienda del Decreto sobre Aire Limpio para políticas corrientes.
1995
Pruebas I/M 240
1996
Acuerdo para el requerimiento del OBD II en vehículos.
Fuente: http://www.redtecnicaautomotriz.com/Recorrido/Articulos/Octubre00.asp
Las enmiendas de 1990 al Decreto sobre Aire Limpio agregaron nuevos elementos. Algunas características del nuevo decreto son: Un estricto control en los niveles de emisión de gases en autos, camiones y ómnibus. Expansión de los programas de Inspección y Mantenimiento, con pruebas más severas. Atención al desarrollo de combustibles alternativos. Estudio de motores no automotrices (ej. Motores de barcos, de equipos para el hogar, para el campo, para la construcción etc.) Programas obligatorios para el transporte alternativo (car-pooling, transito masivo) en ciudades con alto grado de contaminación.
1.3.3. Comisión de Recursos del Aire de California ( CARB ) Luego que el Congreso aprobara el Decreto sobre Aire Limpio en 1970, el estado de California creo la Comisión de Recursos del Aire (California Air Resources Board CARB). Su rol principal era regular, con mayor exigencia, los niveles de emisión de gases en los vehículos vendidos en dicho estado. En muchos otros estados, principalmente en el Noreste, también se adoptaron las medidas tomadas por la CARB.
La CARB comenzó a regular el OBD (On Board Diagnostics) en vehículos vendidos en California a partir de 1988.
El OBD I requería el monitoreo de: El sistema de medición de combustible, el sistema EGR (Exhaust Gas Recirculation) y mediciones adicionales relacionadas con componentes eléctricos.
Una lampara indicadora de malfuncionamiento (MIL) fue requerida para alertar al conductor de cualquier falla. Junto con el MIL, el OBD I necesito también del almacenamiento de Códigos de diagnostico de fallas (DTC), identificando de tal forma el área defectuosa en forma específica.
Con las nuevas enmiendas al Decreto sobre Aire Limpio de 1990, la CARB desarrolló nuevas regulaciones para la segunda generación de Diagnósticos de A bordo: OBD II.
Esto también insto al EPA a perfeccionar sus requerimientos para el OBD II. El EPA permite que los fabricantes certifiquen, hasta 1999, con las regulaciones del OBD II dictadas por la CARB. Para 1996, todo tipo de automóviles, camiones, camionetas y motores vendidos en los Estados Unidos debían cumplir con las normas del OBD II.
1.3.4. Puesta en marcha para la aplicación del sistema. En 1985 el gobierno de los Estados Unidos de Norteamérica se puso al tanto de los efectos perjudiciales que las emisiones de los autos estaban causando en la atmósfera, en cualquiera de las formas antes mencionadas. Leyes tempranas fueron aprobadas dando a los fabricantes de vehículos estrictas guías a seguir con respecto a las emisiones vehiculares.
Estas leyes fueron generalmente ignoradas hasta que en 1988 la Sociedad de Ingenieros Automotrices (Society Automotive Engineers - SAE) propuso varios estándares, y la Comisión de Recursos del Aire de California comenzó la regulación de los Sistemas de Diagnóstico de a Bordo (On Board Diagnostic - OBD) para los vehículos vendidos en California, comenzando con los modelos del año 1988.
Los requerimientos iniciales, de los primeros sistemas conocidos como OBD, requerían la identificación de áreas con problemas de mal funcionamiento relacionadas con los sistemas de medición de combustible, el sistema de recirculación de gases de escape (Exhaust Gas Recirculation System - EGR), componentes relacionados con la emisión de gases y la unidad de control electrónico (Powertrain Control Module - PCM).
Una lámpara indicadora de mal funcionamiento (Malfunction Indicator Lamp MIL), denominada Check Engine (Revisión o chequeo de motor) o Service Engine Soon (Revisar el motor pronto), era requerida para que se iluminara y alertara al conductor del mal funcionamiento y de la necesidad de un servicio de los sistemas de control de emisiones. Un código de falla (Diagnostic Trouble Code - DTC) era requerido para facilitar la identificación del sistema o componente asociado con la falla.
Desafortunadamente,
diferentes
fabricantes
de
autos
cumplían
con
las
especificaciones de la CARB de formas diferente. De hecho, la conformidad era tan variada, que surgió un nuevo problema. El problema era que los fabricantes habían equipado sus vehículos con sistemas OBD que no seguían los estándares; consecuentemente, cada fabricante tenía sus propios códigos de fallas y sus propias herramientas para interpretar dichos códigos.
Talleres independientes a través de la nación luchaban para diagnosticar vehículos con tan amplia variedad de información tanto en los códigos de fallas, como en el equipo necesario para interpretarlas.
Para modelos a partir de comienzos de 1994, ambos, CARB y la EPA aumentaron los requerimientos del sistema OBD, creandon una extensa lista de procedimientos y estándares, convirtiéndolo en la segunda generación de diagnósticos a bordo, el hoy conocido como OBD II.
Para el año 1994, los fabricantes estaban implementando el sistema OBD II, a menos que se les concediera un amparo. La mayoría de los fabricantes solicitaron, y recibieron dicho amparo. Sin embargo a partir de 1996 California decide que el tiempo había sido prudente para el desarrollo de la tecnología con los nuevos requerimientos que traía consigo el sistema OBD II, y requiere la implementación de este para todos los vehículos de gasolina (del año 1996 y posteriores) y vehículos Diesel (del año 1997 y posteriores) de más de 14.000 libras y todos los modelos vendidos a nivel nacional de automóviles para pasajeros y camiones (hasta 8.500 libras) deben cumplir los requerimientos de las normas CARB - OBD II o EPA OBD. Estos requerimientos rigen para vehículos alimentados con gasolina, gasoil (diesel) y están comenzando a incursionar en vehículos que utilicen combustibles alternativos.
2. Definición.
CAPÍTULO II: Descripción del Sistema.
1.1.
Definición.
1.2. Objetivos y Normativas. 1.2.1. Objetivos. 1.2.2. Normativas. 1.3. Comparación entre el sistema OBD2 y el sistema previo OBD. 1.4. Terminología y Simbología. 1.5. Elementos que intervienen en la diagnosis del estado del vehículo. 1.5.1. Luz indicadora de mal funcionamiento “MIL” (Malfuntion Indicador Light). 1.5.2. Códigos de diagnóstico de falla “DTC” (Diagnostic Trouble Code). 1.5.3. Herramienta portátil de diagnóstico. 1.5.4. Conector de Diagnóstico estándar “DLC” (Diagnostic link conector).
2.1. Definición. OBD II son las iniciales de las siglas inglesas On Board Diagnostic Second Generation que en español significa Sistema de Diagnóstico de A Bordo Segunda Generación, para facilidad de la lectura de este trabajo se usaran las iniciales antes mencionadas en el resto del trabajo.
El Sistema OBD II es una mejora del Sistema OBD. Es un sistema de diagnóstico electrónico integrado en el vehículo. Es capaz de monitorear funciones anticontaminantes del motor y generar códigos de fallas, pudiendo también a través de todos los sensores poder “tomar decisiones” (la computadora central está programada para responder de una forma cuando el vehículo se encuentra en un estado predeterminado de funcionamiento el cual lo reconoce a través de las señales enviadas por los diversos sensores) y en base a estas decisiones lograr controlar las emisiones de contaminantes hacia la atmósfera, teniendo también un modo de conducción segura (consumo mínimo de combustible y a una velocidad máxima de unos 30 Km/h), para cuando tiene fallas graves en los sistemas del vehículo que tengan que ver con la seguridad de los pasajeros o con la contaminación que el mismo produce.
El OBD II monitorea el sistema mucho más de cerca, monitorea el desempeño del sistema y alerta al conductor si las emisiones exceden más de 1,5 veces lo aceptado por las normas de emisiones para un vehículo nuevo.
2.2. Terminología y Simbología.5
El aumento de estrictas reglas sobre la emisión de gases ha requerido de un creciente número de sofisticados sistemas electrónicos para controlarla. Por algún tiempo, cada 5
Aquí se encuentra la terminología necesaria para entender el trabajo si se quiere revisar otros términos lo puede hacer en los anexos apartado A. Para la revisión de todos los términos usados desde el OBD1 consultar el CD adjunto o la página web: www.canobd2.com
fabricante uso su propia terminología para describir estos sistemas, lo cual confundía a cualquiera involucrado en el servicio de automotores. Este problema pudo ser eliminado estableciendo un listado de términos, abreviaciones y acrónimos estándar.
En 1991, la Sociedad de Ingenieros Automotrices (SAE) publicó dicho listado para términos, definiciones, abreviaciones y acrónimos de sistemas de diagnostico eléctricos / electrónicos.
La publicación resultante, J1930, se refiere a lo siguiente: Manuales de reparación, servicio y diagnostico. Boletines y actualizaciones. Manuales de entrenamiento. Base de datos de reparaciones. Clasificación de emisiones del motor. Aplicaciones de certificados de emisión.
Los siguientes términos y sus definiciones están relacionados con los sistemas de OBDII: PCM (Power train Control Module). Suministra energía a módulo de Control de tren Monitoreos. son "Rutinas diagnósticas" programadas en el PCM. No todos vehículos soportan los once monitores. Viaje. Es un ciclo requerido para lograr captar los valores de los monitoreos realizados. Ciclo de unidad de disco de EOBD. Se refiere a la revisión completa de todos los monitoreos realizados en el vehículo. Ciclo de precalentamiento. Cuando enciende el vehículo. CCM. Central Control Module Sistema de Control de computadora. Control electrónico. DLC. Data Link Connector
Condición de conducción. Un específico ambiente o condición. DTC. Diagnostic Trouble Code EGR. Exhaust Gas Recirculation EPA. Environmental Protection Agency EVAP. Evaporative Emissions System Congela marco “Freeze Frame”. Representación digital de un fallo. FTP. Fuel Tank Pressure Código genérico. Un DTC universal que es aplicable a todos vehículos EOBD normalizado por la SAE. LCD. Liquid Crystal Display LED. Light Emitting Diode LTFT “Long Term Fuel Trim”. Cortes de combustible a largo plazo programados por la computadora. SAE. Society of Automotive Engineers Código específico del Fabricante. MIL. Malfunction Indicator Lamp (luz del “Check Engine”) OBD 1. On-Board Diagnostics Version 1 OBD 2. On-Board Diagnostics Version 2 On-Board Computer. La unidad de procesamiento central. Código pendiente. Una clave grabada en el "Primer viaje" para una clave de monitoreo dos viajes. STFT “Short Term Fuel Trim”. Cortes de combustible a corto plazo hechos por la computadora. Ciclo de viaje de conducción. Operación de vehículo que provee la información necesaria de permitir que un monitoreo realice y termine su prueba diagnóstica. Y consite en arrancar el motor, ejecutar la diagnosis completa y parar el motor.
Todos estos términos al igual que la simbología que debe ser usada por los vehículos con estos sistemas están estandarizados por la norma J1930, la cual fue puesta en marcha desde 1991 y fue aprobada por la Sociedad de Ingenieros Automotrices SAE,.
En la siguiente figura se muestra la simbología usada en OBD II.
Fuente: www.redtecnicaautomotriz.com 1. Malfunction Indicator Lamp (MIL): lámpara indicadora de mal funcionamiento. 2. Base Engine or any of its components: motor base o alguno de sus componentes. 3. Transmission or Transaxle: transmisión o caja de velocidades. 4. Ignition System: sistema de encendido. 5. Air Conditioner (A/C) or Heater System: aire acondicionado o sistema de calefacción. 6. Fuel Level Input (FLI): entrada de información del nivel de combustible. 7. Crankshaft Position CKP or RPM.: sensor de posición del cigüeñal y/o RPM. 8. Mass Air Flow (MAF): medidor de masa de aire itido.
9. Engine Coolant Temperature (ECT): sensor de temperatura de líquido refrigerante de motor. 10. Intake Air Temperature (IAT): sensor de temperatura del aire itido. 11. Throttle Position (TP): sensor de posición de mariposa. 12. Vehicle Speed: sensor de velocidad de vehículo. 13. Camshaft Position (CMP): sensor de posición de árbol de levas (captor de fase).
2.3. Objetivos y Normativas.
2.3.1. Objetivos Los principales objetivos del sistema OBD II son: Detectar componentes o sistemas relacionados con las emisiones que están degradados y/o que han fallado, que podrían causar que las emisiones de escape excedieran en 1.5 veces el estándar del Procedimiento de Pruebas Federal (FTP). Ampliar el monitoreo de los sistemas relacionados con las emisiones. Esto incluye un conjunto de diagnósticos por computadora, denominado Monitores. Los monitores llevan a cabo diagnósticos y pruebas con el fin de verificar que todos los componentes y/o sistemas relacionados con las emisiones estén funcionando correctamente y dentro de las especificaciones del fabricante. Usar un Conector de Enlace de Diagnóstico (DLC) estandarizado en todos los vehículos. (Antes de OBD 2, los DLC tenían diferentes formas y tamaños. Estandarizar los números de código, las definiciones de los códigos y el lenguaje utilizado para describir las fallas. (Antes de OBD 2, cada fabricante de vehículos utilizaba sus propios números de código, sus propias definiciones de los códigos, y su propio lenguaje para describir las mismas fallas.)
Ampliar la operación de la Lámpara Indicadora de Falla de Funcionamiento (MIL). Estandarizar los procedimientos y protocolos de comunicaciones entre los equipos de diagnóstico (Herramientas de Escaneado, Lectores de Códigos, etc.) y la computadora a bordo del vehículo. Permitir el uso de lectores de códigos alternativos (no de fábrica). Facilidad de obtención de información de servicio para los técnicos de talleres no oficiales. El sistema debe encender una luz de advertencia (MIL) en el tablero del vehículo para indicar una falla.
2.3.2.
Normativa
La CARB desarrollo pautas para el OBD II, que tuvieron efecto a partir de 1996. A continuación se detalla la lista de requerimientos trazada para el OBD II: Se encenderá la lámpara indicadora de mal funcionamiento (MIL) si las emisiones de HC, CO o NOx exceden ciertos límites. El uso de una computadora a bordo para monitorear las condiciones de los componentes electrónicos y para encender la luz MIL se los componentes fallan o si los niveles de emisión exceden los límites permitidos. Especificaciones estándar para un conector de diagnóstico (DLC), incluyendo la localización del mismo y permitiendo el con escáneres genéricos. Implementación de normas para la industria sobre emisiones relacionadas con códigos de diagnóstico (DTC), con definiciones estándar. Estandarización de sistemas eléctricos, términos de componentes y acrónimos. Información
sobre servicio, diagnóstico, mantenimiento y reparación,
disponible para toda persona comprometida con la reparación y el servicio automotor.
2.4. Comparación entre el sistema OBD2 y el sistema previo OBD. OBD I: Los monitoreos han sido diseñados para detectar fallas eléctricas en el sistema y en los componentes.
OBD II: Monitorea el desempeño de los sistemas de emisión y de los componentes, como así también las fallas eléctricas; y almacena información para su uso posterior.
En cuanto a la diferencia de los requerimientos que este sistema posee se contrasta las diferencias y semejanzas que pueden existir, teniendo más requerimientos la OBDII:
OBD 1
OBD 2
Sensor de oxigeno
Sensor de oxigeno ampliado/avanzado
Sistema EGR
Sistema EGR ampliado/avanzado
Sistema de combustible
Sistema de combustible ampliado/avanzado
Componentes
electrónicos
de Componentes electrónicos de entrada
entrada Diagnostico de información
Componentes electrónicos de salida
Códigos de falla
Eficiencia del catalizador Calentamiento del catalizador Pérdida de chispa en el motor Sistema evaporativo Sistema de aire secundario Información de diagnóstico Códigos de falla Parámetros de datos del motor Congelamientos de datos del motor Estandarización
Fuente: http://www.redtecnicaautomotriz.com/Recorrido/Articulos/Febrero02.asp
OBD I: problemas de emisiones por elementos degradados no es registrado en códigos.
OBD II: se generan códigos de falla cuando los elementos funcionan fuera de rango.
OBD I: La luz del MIL se apagará si el problema de emisiones se corrige por sí solo.
OBD II: El MIL se mantiene encendido hasta que hayan pasado 3 ciclos de conducción consecutivos, sin que el problema reincida. La memoria es despejada luego de 40 arranques en frío. Si se trata del monitoreo de combustible se necesitan 80 arranques en frío.
OBD I: Monitoreos requeridos: Sensor de oxigeno Sistema EGR Sistema de reparto de combustiblePCM
OBD II: Monitoreos requeridos: Eficiencia del catalizador Fuego perdido Control de combustible Respuesta del sensor de oxigeno Calefactor del sensor de oxigeno Detallado de componentes
Emisiones evaporativas Sistema de aire secundario (si está equipado) Sistema EGR
OBD I: Los códigos, las definiciones de códigos, los conectores de diagnóstico, los protocolos de comunicaciones y la terminología de emisiones eran diferentes para cada fabricante, causando confusión a los técnicos que trabajan en diferentes marcas y modelos de vehículos.
OBD II: Usa un conector de enlace de diagnóstico (DLC) estandarizado en todos los vehículos. Estandariza los números de código, las definiciones de los códigos y el lenguaje utilizado para describir las fallas.
2.5. Elementos que intervienen en la diagnosis del estado del vehículo.
De acuerdo a lo escrito y descrito anteriormente, siguiendo con la descripción de este sistema encontramos que para cumplir con todos los requisitos y disposiciones dichas en páginas anteriores este sistema requiere de algunos elementos para la diagnosis del estado del vehículo. A continuación damos una lista de estos elementos:
Luz indicadora de mal funcionamiento (Malfuntion Indicator Lamp - MIL). Códigos de falla (Diagnostic Trouble Code - DTC). Herramienta portátil de diagnosis (Scanner). Conector de Diagnostico Estándar (Diagnostic Link Conector - DLC)
Ahora daremos una explicación de cada uno de estos elementos:
2.55.1.
Luzz indicad dora de mal fun ncionamien nto (Mallfuntion
Indicad dor Light - MIL).
Cuando ell sistema de control detecta d una falla, la luzz indicadoraa se encien nde en el tablero de instrumenttos, el propóósito de estaa luz es indicar al condductor que existe e un problema y que es neecesario efecctuar un diaagnóstico all sistema.
Fuente: Soporte S maggnético, Ing Vicente Ceelani, Cursoo de Graduación 2007
Algunas veces v esta luz l “MIL” toma el no ombre de "Service Enngine Soon"", Check Engine" o simplemennte " Check"".
Fuente: Soporte S maggnético, Ing Vicente Ceelani, Cursoo de Graduación 2007
2.5.2.
Códigos de diagnóstico de falla (Diagnostic Trouble Code -
DTC).
Los códigos de diagnostico de fallas ( DTC’s ) han sido proyectados para dirigir a los técnicos automotrices hacia un correcto procedimiento de servicio6. Los DTC no necesariamente implican fallas en componentes específicos. La iluminación del MIL es una especificación de fabrica y está basada en el testeo de como los malfuncionamientos de componentes y /o sistemas afectan a las emisiones. La SAE publicó la norma J2012 para estandarizar el formato de los códigos de diagnostico. Este formato permite que los scanner genéricos accedan a cualquier sistema. El formato asigna códigos alfanuméricos a las fallas7 y provee una guía de mensajes uniformes asociados con estos códigos. Las fallas sin un código asignado, puede que tengan una asignación de código otorgado por el fabricante al que se denomina código específico del fabricante.
A continuación se muestra un ejemplo de un código de falla y el significado de cada dígito: 6
Esto no significa que se puede depender de esto únicamente y como un ejemplo adjuntamos en el CD que viene junto a este trabajo un ejemplo de los Parámetros que intervienen en el diagnóstico de un motor, el cual por respeto a los autores del mismo se mantiene en el idioma original. Esta bajado de la página web: http://www.aa1car.com/library/gm_4.6l_diagnostic_parameters.pdf 7 A este tipo de códigos los denominan genéricos y si se requiere conocer la definición de la gran mayoría de estos se puede visitar la página web: http://www.aa1car.com/trouble‐codes/ y/o consultar en la información que se tiene en el CD adjunto a este trabajo, cuyo compilador es la empresa CISE Electronics.
PRIMER DÍGITO:
SEGUNDO DÍGITO:
Indica la sección del vehículo sobre la que se
Indica
produce la falla. Podemos tener problemas en:
generado es normalizado
B – Carrocería
(genérico) o es específico
C – Chasis
de
P – Motor y tren de transmisión
Podemos tener:
U – La comunicación (red de datos).
0 – código genérico
si
el
cada
código
fabricante.
1 – código específico TERCER DÍGITO:
Indica el sistema sobre el que se produce la falla. Podemos tener problemas en:
1 – Componentes relacionados con el
PO213
control de la relación Aire-Combustible. 2 – Componentes relacionados con el sistema de alimentación de combustible (inyectores, controles de bomba) 3 – Relación con el sistema de encendido o falla por mala combustión. 4 – Relación con el sistema auxiliar de
CUARTO
Y
control de contaminación.
QUINTO DÍGITO:
5 – Relación con el control de marcha mínima y velocidad de giro del motor.
Indican la sección del
6 – Relación con la comunicación de la
sistema en la que se
unidad de control.
produce la falla.
7 – Relación con la transmisión automática. 8 y 9– Relación con la transmisión
Indica el componente
automática.
específico
Los códigos de falla los podemos clasificar en: Códigos continuos. Códigos pendientes. Códigos de memoria.
2.5.2.1.
Códigos continuos.
Son los únicos que encienden la luz MIL. Se comporta de la siguiente manera:
Código continuo
La luz MIL se
es detectado
enciende
Se analiza si el NO
La luz MIL se
catalizador corre peligro
DTC es almacenado
mantiene encendida
SI
La luz MIL se enciende intermitentemente
“Foto” de parámetros instantáneos del sistema
2.5.2.2.
Códigos pendientes.
Estos no encienden la luz MIL. Se comporta de la siguiente manera:
Un código es detectado
Se genera un código
en el primer viaje
pendiente en la memoria
Se detecta el mismo código
NO
SI
en el segundo viaje
El computador El código pendiente se
DTC es confirmado
convierte el código
borra de la memoria
en memoria
pendiente en continuo. La luz MIL se enciende
“Foto” de parámetros instantáneos del sistema
2.5.2.3.
Códigos de memoria.
Son códigos que se encuentran almacenados en la memoria del computador. Se comportan de la siguiente manera:
Un código continuo es detectado
Si luego de tres ciclos de manejo consecutivos no se repite la falla, entonces la luz MIL es apagada
Si luego de 40 ciclos
Si la falla se vuelve a
consecutivos no se repite la
repetir, se genera un
falla, esta es borrada de la
código continuo
memoria definitivamente.
inmediatamente
2.5.3.
Herramienta portátil de diagnóstico.
La herramienta portátil de diagnóstico, o más conocido como Scanner, para OBD II debe cumplir ciertos requerimientos bajo una norma específica.
El documento J1978 de la SAE describe los mínimos requerimientos para un scanner de OBD II. Este documento abarca desde las capacidades necesarias hasta el criterio al que debe someterse todo scanner para OBD II. Los fabricantes de herramientas pueden agregar habilidades adicionales pero a discreción (tomándose como “discreción” el que no podrán ubicar funciones en el scanner que puedan alterar el buen funcionamiento anticontaminante de un motor).
Los requerimientos básicos para un OBD II Scan Tool son: Determinación automática de la interface de comunicación usada. Determinación automática y exhibición de la disponibilidad de información sobre inspección y mantenimiento. Exhibición de códigos de diagnostico relacionados con la emisión, datos en curso, congelado de datos e información del sensor de oxigeno. Borrado de los DTC, del congelado de datos y del estado de las pruebas de diagnostico.
Fuente: Soporte magnético, Ing Vicente Celani, Curso de Graduación 2007
2.5.4.
Conector de Diagnóstico estándar (Diagnostic link conector
- DLC).
El conector de diagnóstico DLC permite la conexión con la herramienta de diagnóstico (escáner).
Este conector está estandarizado para permitir el uso del escáner original de la marca del vehículo o de un escáner de alternativo o genérico. El conector DLC está formado por 16 pines como se observa en la figura:
Fuente: Soporte magnético, Ing Vicente Celani, Curso de Graduación 2007
El conector para el vehículo debe ser el mismo por norma pero el otro extremo del cable varía de acuerdo al tipo de scanner, aquí presentamos algunos ejemplos de estos cables:
Fuente: http://www.obd2.cl/universal.htm
2.5.4.1.
Ubicación del conector DLC
Según la normativa se requiere que el conector este ubicado en un lugar cerca del conductor. Esto es en un radio no mayor de 300 mm alrededor del centro del tablero de instrumentos. A continuación se muestra algunos lugares de ubicación del conector:
Fuente: Soporte magnético, Ing Vicente Celani, Curso de Graduación 2007
Fuente: Soporte magnético, Ing Vicente Celani, Curso de Graduación 2007
2.5.4.2.
Función de pines del conector DLC.
Los pines del conector tienen funciones asignadas, que responden a diferentes normativas y protocolos de comunicación de acuerdo a las especificaciones internas de cada fabricante. Hay 5 combinaciones básicas de pines de salida “pinout” dentro del padrón, cada uno de los cuales usa un protocolo de comunicaciones específico, abajo se da una lista, y se describe la función de cada pin de acuerdo a la observación del frente del DLC.
A continuación se presentan la función que cumplen estos pines de acuerdo al protocolo de comunicación en el que se basan (La explicación de estos protocolos y los fabricantes que los utilizan se encuentra en el Capítulo 3).
Fuente: Soporte S maggnético, Ing Vicente Ceelani, Cursoo de Graduación 2007
Pin
Uso
2
J1850 Bus+
4
Masaa de Chasis
5
Masaa de Señal
6
CAN N High (J-22 284)
7
ISO 9141-2 Linea K e ISO O/DIS 142300-4
10
J1850 Bus
14
CAN N Low (J-22 284)
15
ISO 9141-2 lineea L e ISO//DIS 14230--4
16
Alim mentación dee Batería
1, 3, 8, 8 9, Reseervados paara usos específicos del 11, 12, 13
fabriicante del veehículo.
Fuente: Soporte S maggnético, Ing Vicente Ceelani, Cursoo de Graduación 2007
CAPÍTULO III: Monitoreos y Protocolos.
1.1. Monitoreos. 1.1.1. Monitoreos Continuos. 1.1.2. Monitoreos Interrumpidos 1.2. Protocolos de comunicación.
3.1. Monitoreos8. Para asegurar la operación correcta de las varias relaciones de las emisiones de gases y sus componentes y sistemas, un programa diagnóstico fue desarrollado e instalado en la computadora interna del vehículo. El programa tiene varios procedimientos y estrategias diagnósticas. Cada procedimiento o estrategia de diagnóstico es hecha por una operación de monitoreo, y dirigida a pruebas continuas cuando el motor está funcionando, un componente específico o un sistema es relacionado directamenete con las emisiones de gases. Estas pruebas aseguran que el sistema está funcionando correctamente y está dentro de las especificaciones del fabricante.
Actualmente, son requeridos un máximo de doce monitoreos. Los monitores adicionales pueden sé añadido como consecuencia de reglas adicionales como el sistema de EOBD que evolucionó de este sistema OBDII. No todos los vehículos soportan todos los doce monitoreos. La operación de un monitoreo es Continuo o Interrumpido, dependiendo del monitoreo específico.
3.1.1.
Monitoreos Continuos.
Los monitores continuos funcionan constantemente cuando el motor está funcionando, y fueron diseñados para monitorear constantemente todos los componentes y/o sistemas que intervienen en la operación correcta del vehículo y sus niveles de contaminación. A continuación se presentan estos monitoreos:
Monitoreo del componente exhaustivo (Comprehensive Component Monitor CCM). Monitoreo de fallo de encendido. Monitoreo de sistema de combustible.
Ahora procederemos a detallar cada uno de esto monitoreos. 8
Leer precauciones personales a tomar en cuenta a la hora de poner en práctica estos conocimientos remitirse a las RECOMENDACIONES de este trabajo página 62.
3.1.1.1.
Monitoreo
exhaustivo
de
componentes
(Comprehensive Component Monitor - CCM) Conocido como “CCM” (Comprehensive Component Monitor). Controla el mal funcionamiento en algún componente electrónico o circuito que reciba o provea señales de entrada o salida al PCM, que puedan afectar el nivel de emisiones contaminantes y que no son controlados por ningún otro control de OBD II.
Existen dos maneras de realizar los monitoreos “CCM”:
Prueba eléctrica.- El PCM controla a los circuitos en lo que se refiere a continuidad de circuitos, adecuado rango de valores de voltajes y resistencia de los componentes.
Los monitoreos CCM cubren muchos componentes y circuitos y prueba a ellos de varias formas, dependiendo del sensor, función y tipo de señal. Por ejemplo, entradas análogas (tensiones) tales como Posición de Mariposa o Sensor de Temperatura de Líquido Refrigerante de Motor, son típicos chequeos para circuito abierto, cortocircuito o valores fuera de rango. Este tipo de control es realizado continuamente.
Salidas tales como la válvula de control de marcha lenta, son controladas de modo de detectar circuito abierto o cortocircuito mediante el control de un circuito de realimentación (Smart Driver) asociado con la salida.
Prueba racional de componentes.- Donde es factible, las entradas son también controladas racionalmente, esto significa que la señal de entrada es comparada contra otras señales de entradas y ver así si la información que brinda está de acuerdo a las condiciones del momento.
Las salidas son controladas en lo que hace a su funcionamiento apropiado. Cuando el PCM entrega una tensión a un componente de salida, puede verificar que el mando enviado ha sido cumplido, por medio del monitoreo específico de las señales de entrada en las que deben producirse cambios.
Por ejemplo, cuando el PCM activa la válvula de regulación de marcha lenta para posicionarla en un determinado punto bajo ciertas condiciones de funcionamiento, ella esperará a que exista una determinada velocidad de rotación del motor. Si esto no sucede, ella almacenará un DTC.
Algunas señales de entrada digitales como, Velocidad del Vehículo o Posición del Cigüeñal son racionalmente controladas, comprobando para ver si el valor informado por el sensor obedece a las condiciones de operación actuales del motor.
Este tipo de comprobaciones pueden requerir el control de varios componentes y solamente pueden ser realizadas bajo ciertas condiciones de ensayo. Una válvula control de marcha lenta puede ser comprobada funcionalmente controlando las rpm relativas del motor, con las rpm previamente memorizadas para esas condiciones.
Algunas comprobaciones pueden ser solamente realizadas bajo ciertas condiciones de ensayo; por ejemplo, los solenoides de cambios en la transmisión solamente pueden ser comprobados cuando el PCM activa un cambio.
Los siguientes componentes son un ejemplo de componentes de entrada y salida monitoreados por CCM. El control de componentes puede también asociarse al motor, encendido, transmisiones, aire acondicionado, o cualquier otro subsistema soportado por el PCM.
1. Entradas: Sensor de masa de aire (MAF). Sensor de temperatura del aire aspirado (IAT). Sensor de temperatura del líquido refrigerante de motor (ECT). Sensor de posición de la mariposa (TP). Sensor de posición del árbol de levas (CMP). Sensor de presión del sistema del aire acondicionado (AS). Sensor de presión del tanque de combustible (FTP).
2. Salidas: Bomba de combustible (FP). Desactivación del relé del A/C con mariposa abierta al máximo (WAC). Válvula de control de marcha lenta (IAC). Solenoide comando de cambios (SS). Solenoide del embrague del convertidor de torque (TCC). Múltiple de isión variable (IMRC). Válvula de purga del canister (EVAP). Solenoide de ventilación del canister (CV).
3. El CCM es habilitado después de producirse el arranque del motor y este se mantenga funcionando. Un Código de Diagnóstico (DTC) es almacenado en la Memoria de Almacenamiento Activa (PCM Keep Alive Memory - KAM) y la Lámpara Indicadora de Mal Funcionamiento (MIL) se iluminará cuando un fallo sea detectado en dos ciclos de control consecutivos. Muchos de los ensayos realizados por el CCM son también realizados durante el testeo.
Fuente: http://www.rolcar.com.mx/Tecno%20Tips/OBD%20II/Controles%20y%20simbologi a.htm
3.1.1.2.
Monitoreeo de fallo de encend dido
Conocido como moonitoreo “m misfire” (fu uego perdiddo) se refi fiere a la falla de encendidoo (chispa) en e un cilinddro. El PCM M mira la señal del sensor del cigüeñal; c cuando occurre una faalla de encenndido el girro del cigüeeñal se retraasa brevemeente, y el PCM veráá un cambioo en la ampplitud de laa señal de las l rpm del motor. Ad demás se observa laa señal del sensor de oxxígeno para confirmar la l falla.
Fuente: www.wrench w head.ca
Annte una dettección de fuego perd dido que puuede ocasioonar un ex xceso de em misiones conntaminantess la luz MIL L se iluminaará y un DTC C será almaacenado. Annte una deetección dee fuego peerdido quee puede caausar daños en el cattalizador, la l luz MIL L destellará una vezz por seguundo mienttras esté prooduciéndosee la pérdidaa y un códig go DTC seráá almacenaddo.
Algunos sistemas pueden identificar el cilindro exacto en el que produjo la falla, y el PCM almacena un código de falla OBDII específico, mientras que otros guardan un P0300 lo cual indica un fuego perdido general.-
3.1.1.3.
Monitoreo de sistema de combustible
Este monitoreo se realiza por medio de analizar el comportamiento de la señal del sensor de oxígeno, el PCM dosifica la entrega de combustible controlando el ancho de pulso de los inyectores.
Corrección de combustible a corto plazo “STFT” (Short Term Fuel Trim)
Basado en la señal del sensor de oxígeno, el PCM corrige la dosificación de combustible a corto plazo, de acuerdo a condiciones inmediatas de funcionamiento. Se expresa en porcentaje y va desde -25% hasta +35%.
Un valor negativo indica que se está restando combustible en respuesta a una mezcla rica, y un valor positivo indica que se está sumando combustible en respuesta a una mezcla pobre. Los valores normales oscilan entre -10% y +10%.
Corrección de combustible a largo plazo “LTFT” (Long Term Fuel Trim)
Basado en la estrategia STFT, el PCM corrige la entrega de combustible a largo plaza de acuerdo a condiciones de funcionamiento del motor.
Se expresa en porcentaje y va desde -35% hasta +35% y se interpreta de la misma forma que el STFT, los valores normales oscilan entre -10% y +10%.
3.1.2.
Monitoreos Interrumpidos.
Los otros nueve monitores son " interrumpidos" ó "no continuos". Estos monitoreos se llevan a cabo y terminan su prueba una vez por viaje. Los monitoreos "interrumpidos" son: Monitoreo de sensor de oxígeno. Monitoreo de calentador de sensor de oxígeno. Monitoreo de catalizador. Monitoreo del climatizador del catalizador. Monitoreo de sistema de EGR. Monitoreo de sistema aéreo secundario. Monitoreo de aire acondicionado (c / uno). Monitoreo de sistema de EVAP. Monitoreo de la recirculación de gases de escape.
Lo siguiente provee una explicación de la función de cada monitoreo:
3.1.2.1.
Monitoreo de sensor de oxígeno9.
El sensor de oxígeno monitorea cuánto oxígeno está en los gases de escape del vehículo. Genera una variación de voltaje de hasta un voltio, sobre la base de cuánto oxígeno está en los gases de escape, y envía la señal a la computadora. La computadora usa esta señal de hacer las rectificaciones a la mezcla de aire / combustible. Si los gases de escape tienen una gran cantidad de oxígeno (una mezcla de aire / combustible pobre), el sensor de oxígeno genera una señal de voltaje "Baja". Si los gases de escape tienen muy poco oxígeno (una condición de mezcla rica), el sensor de oxígeno genera una señal de voltaje "Alta".
9
Para la ampliación del tema visitese la página web: http://www.autoinc.org/
Una señall de 450mV V demuestraa la proporción de aire / combustibble más eficciente, y menos conntaminante de 14.7 graamos de airee a una gram mos de combbustible.
Fuente: http://www.w h wrenchead.ca/HTML% %20Presentaation%20follder/sld099.htm
peratura de al menos 3115-343 ºC (600-650 ( El sensor de oxígeno debe llegarr a una temp ºF), y el motor deebe llegar a la temp peratura opperativa norrmal, para que la computadoora entre enn la operacióón de lazo cerrado. c
na cuando la computaadora está en lazo El sensorr de oxígenno solamennte funcion cerrado. Un U sensor dee oxígeno operando o apropiadamennte reaccionna frente a cualquier c cambio enn el conteniddo de oxígeeno rápidam mente en el torrente t de ggases de esccape. Un sensor de oxígeno deefectuoso reacciona r deespacio, o su señal dee voltaje ess débil o faltante. El E sensor de oxígeno tieene un moniitoreo "Dos viajes".
Fuente: http://www.w h wrenchead.ca/HTML% %20Presentaation%20follder/sld098.htm
3.1.2.2.
Monitoreeo del caleentador dee sensor dee oxígeno.
o evaalúa la operaación del caalentador El Monitooreo del caleentador del sensor de oxígeno del sensorr de oxígenno. Hay dos modos de operación en un vehícculo controlado por computadoora: bucle abierto a "Oppen loop" y bucle cerrrado "Close loop". El vehículo v opera en bucle b abiertoo cuando ell motor estáá frío, antes de que lleggue a la tem mperatura operativa normal. Ell vehículo también see va en moodo de buccle abierto en otras ocasiones,, como en condiciones c s de carga pesada p y de velocidad m máxima. Cu uando el vehículo está e funcionnando en lazo abierto o o bucle abierto, a la sseñal del seensor de oxígeno es ignorada por la com mputadora paara las rectiificaciones de mezcla de aire / combustibble.
La eficiencia de motor durante la operación en lazo abierto es muy baja, y resulta en la producción de más emisiones de gases del vehículo.
La operación de lazo cerrado es la mejor condición para tantas emisiones de gases del vehículo como para su funcionamiento, y consiste en tomar en cuenta la señal de los sensores o sensor de oxígeno según sea el caso y variar la mezcla y/o el tiempo de encendido para evitar la contaminación.
Fuente: Soporte magnético, Ing Vicente Celani, Curso de Graduación 2007
Cuando el vehículo está operando en lazo cerrado, la computadora usa la señal del sensor de oxígeno para rectificaciones de mezcla de aire / combustible. En orden para la computadora entrar en operación de lazo cerrado, el sensor de oxígeno debe llegar a una temperatura de al menos 315 °C (600 °F). El calentador del sensor de oxígeno ayuda el sensor de oxígeno a alcanzar más rápidamente y mantener su temperatura operativa mínima de 315 ºC (600 °F), para que el vehículo entre a
funcionar en lazo cerrrado lo antees posible. El monitoreeo del calenntador del sensor de oxígeno ess un monitooreo "Dos viajes".
3.1.2.3.
Monitoreeo de catallizador.
El converrtidor catalíttico es un dispositivo que está innstalado abbajo del collector de gases de escape. Esste ayuda para la co ombustión del d combusstible no quemado q (hidrocarbburos) y coombustible parcialment p te quemadoo (monóxiddo de carbo ono) que partieron desde el prroceso de combustión. c Para Logrrar esto, callienta y cataaliza los materialess dentro del transformaador estos efectos reacccionan con los gases de escape para consuumir el com mbustible resstante.
h aa1car.com Fuente: http://www.a
Algunos materiales m d dentro del convertidor c catalítico también t tiennen la habiilidad de guardar10 oxígeno, y usarlo cuanndo lo requ uieran para combustionnar hidrocarrburos y
10
Retienen moléculas de oxígeno que no son usadas en el processo de combusttión para desp pués cuando en ccargas mayorees y mezclas ricas haga faltaa oxígeno para completar laa combustión en el catalizador.
monóxidoo de carbonno. En el proceso, reduce r emisiones de gases de vehículo v convirtienndo los gasees contaminaantes en dió óxido de carrbono y aguua.
La compuutadora verrifica la eficiencia del convertidoor catalíticoo monitoreaando los sensores de d oxígenoo utilizadoss por el sisstema. Un sensor estáá ubicado antes el transformaador (upsttream); el otro estáá ubicado después del transfformador (downstream). Si el convertidor c catalítico pierde p su haabilidad de guardar oxíígeno, el wnstream es casi la misma m que la señal deel sensor voltaje dee señal del sensor dow upstream. En este casso, el monitooreo reprueeba la prueba.
Fuente: Soporte S maggnético, Ing Vicente Ceelani, Cursoo de Graduación 2007
El monitooreo del Catalizador C es un mon nitoreo "Dos viajes". Si un defecto es encontradoo en el primer viaje, la computtadora guarrda el erroor como un n código pendiente en su mem moria temporral. La comp putadora noo exige la M MIL en “On”” en este momento. Si el error es detectaddo otra vez en e el segunddo viaje, la computado ora exige que la MIL L este en "O On", y esta guarda g la cllave en su memoria m a laargo plazo.
El Procedimiento de Control de Eficiencia del Catalizador controla el sistema del catalizador para detectar deterioros del mismo e ilumina la MIL cuando las emisiones contaminantes contenidas en los gases de escape exceden el umbral máximo permitido. Es llamado controlador del catalizador FTP porque se debe completar durante un testeo standard de emisiones (Procedimiento de Testeo Reglamentado - Federal Test Procedure).
El monitoreo mencionado, depende de la información de los sensores de oxígeno (sondas lambda) anterior y posterior al catalizador para deducir la eficiencia de este, basandose en la capacidad de almacenamiento de oxígeno de dicho catalizador. Bajo condiciones normales de funcionamiento del motor, control de mezcla aire/combustible en lazo cerrado, la alta eficiencia del catalizador para almacenar oxígeno provoca que la frecuencia de variación del sensor de oxígeno posterior sea mucho menor que la frecuencia de variación del sensor de oxígeno anterior.
A medida que la eficiencia del catalizador se va deteriorando, su condición para almacenar oxígeno disminuye y el sensor de oxígeno posterior comienza a producir cambios más rápidamente, aproximándose a la frecuencia de cambio del sensor de oxígeno anterior al mismo.
En general, cuando la eficiencia de un catalizador disminuye, el rango de variaciones que se producen en el sensor posterior se incrementa desde 0 (cero), para un catalizador con pocos kilómetros de uso, a un rango de 0,8 o 0,9 cambios por segundo.
Los cambios de tensión que generan ambos sensores de oxígeno(anterior y posterior al catalizador), son contados por el PCM bajo ciertas condiciones de funcionamiento del motor, siempre en operación de control de la mezcla aire/combustible en lazo cerrado. Cuando se producen un número de cambios programados del sensor
anterior, el PCM calcula la relación de cambios producidos entre el sensor posterior y anterior.
Esta razón de cambios es comparada con un valor previamente almacenado en la memoria del PCM. Si el rango de cambios es mayor al umbral estipulado para mantener bajas las emisiones contaminantes, el catalizador está fallando.
Condiciones específicas de las señales de entrada de los sensores periféricos tales como ECT (motor caliente a temperatura de trabajo), IAT (no a temperaturas ambientes extremas), MAF (mayor que la mínima carga de motor), VSS (dentro de un rango de velocidades) y TP (apertura parcial de la mariposa), son requeridos para realizar el Control de Eficiencia del Catalizador.
Los DTCs asociados con este ensayo son DTC P0420 (Banco 1) y P 0430 (Banco 2). Hasta seis ciclos de control pueden ser requeridos para que se ilumine la MIL.
3.1.2.4.
Monitoreo del climatizador del catalizador.
La operación del "Calentador" del convertidor catalítico es similar al convertidor catalítico. La diferencia principal es que un calentador es añadido para llevar al convertidor catalítico a su temperatura operativa más rápidamente. Esto ayuda a reducir las emisiones de gases reduciendo el tiempo improductivo del convertidor cuando el motor está frío. El monitoreo del calentador del catalizador lleva a cabo las mismas pruebas diagnósticas que el monitoreo del catalizador, y también evalúa el calentador del convertidor catalítico para la operación correcta. Este monitoreo es también un monitoreo "Dos viajes".
3.1.2.5.
Monitoreo de sistema de EGR.
El sistema de Recirculación de gases de escape (EGR) ayuda a reducir la formación de óxidos de nitrógeno durante la combustión. Las temperaturas encima de 1371 °C (2500 °F) causan que el nitrógeno y oxígeno se unan y formen óxidos de nitrógeno en la cámara de combustión. Para reducir la formación de óxidos de nitrógeno, las temperaturas de combustión deben estar debajo de 1371 °C (2500 °F), el sistema EGR hace recircular cantidades pequeñas de gases de escape en el colector de isión, donde se combina con la mezcla de aire / combustible entrante. Este reduce las temperaturas de combustión en hasta 260 °C (500 °F). La computadora determina cuándo, por cuánto tiempo, y que cantidad es recirculado de regreso al colector de isión de aire.
El control del Sistema de EGR a través de la Realimentación de Presión Diferencial es una estrategia de a bordo diseñada para testear la integridad y características de flujo del sistema de EGR.
Fuente: www.fordscorpio.co.uk/egrmonitor.htm
El control es activado durante la operación del sistema de EGR y después que ciertas condiciones básicas del motor son satisfechas. Informaciones de entrada provenientes de los sensores ECT, IAT, TP y CKP son requeridas para que se active el control del sistema de EGR. Una vez activado, el control del sistema de EGR realizará cada uno de los test que se describen a continuación. Algunos de los test incluidos en el control del sistema de EGR son también realizados durante el auto diagnóstico.
1. El sensor de presión diferencial y su circuito son continuamente testeados en lo concerniente a circuito abierto o en cortocircuito. El control observa las tensiones en el circuito del sensor de presión diferencial para controlar si exceden el límite máximo o mínimo itido. Los códigos de fallas asociados con este test son los: DTCs P1400 y P1401. 2. El solenoide de regulación de vacío de la EGR es continuamente testeado para detectar circuito abierto o en cortocircuito. El control observa si la tensión presente en el circuito del regulador de vacío, no concuerda con el estado del circuito en estado abierto. El código de falla asociado con este test es el: DTC P1409.
Fuente: www.fordscorpio.co.uk/egrmonitor.htm
3. El testeo de la válvula EGR trabada abierta o el flujo de gases de escape durante la marcha del motor en vacío es continuamente realizado, cada vez que el sensor de posición de mariposa TP indique mariposa cerrada.
Para determinar si existe flujo de gases de escape con el motor marchando en vacío, el control compara, para esta condición de marcha, el nivel de tensión de información proveniente del sensor de presión diferencial, con el nivel de tensión que enviaba dicho sensor (nivel almacenado en memoria) durante la condición de llave en posición de o y motor detenido. El código de falla asociado con este test es el : DTC P0402.
4. La manguera de presión "corriente arriba" (alta presión - high signal) (manguera lado escape) es testeada una vez por ciclo de manejo para asegurar si está conectada o desconectada. El test es realizado con la válvula EGR cerrada y durante un período de aceleración. El PCM mantendrá el solenoide
EVR cerrado, obligando de esta manera a la válvula EGR a permanecer cerrada. El sistema de control comprobará el nivel de tensión de la señal enviada por el sensor de presión diferencial, esperando no ver cambios de nivel en la señal. Si esto sucede, denotará que no hay flujo de gases de escape circulando.
Si durante la aceleración, mientras la válvula EGR está cerrada, suceden cambios en el nivel de la tensión de señal enviada por el sensor de presión diferencial (aumento o disminución de nivel), posiblemente esté indicando un fallo en la manguera de presión "corriente abajo" (señal de referencia - Ref signal) (manguera lado isión). El código de falla asociado con este test es el: DTC P140X.
Fuente: www.fordscorpio.co.uk/egrmonitor.htm
5. El test de la tasa de flujo de gases de escape que circulan por la EGR hacia la isión es realizado cuando la velocidad de rotación del motor y la carga
que se le está demandando son moderados y constantes y el ciclo activo del regulador de vacío es alto. El sistema de monitoreo compara, cuando se dan esas condiciones, el nivel de tensión de la señal proveniente del sensor de presión diferencial con un nivel esperado, ya establecido de antemano, para esas mismas condiciones, de modo de poder determinar si la tasa de flujo de gases de escape que está circulando es aceptable o insuficiente. Este es un sistema de test y podría dar como resultado un código de fallo (DTC) generado por un defecto que ocasiona una falla en el sistema de EGR. El código de falla asociado con este test es el: DTC P0401.
Fuente: www.fordscorpio.co.uk/egrmonitor.htm
6. La MIL es activada después que alguno de los test descriptos no sea aprobado o cuando la fallo se repita en dos ciclos de uso
El monitoreo de EGR es un monitoreo "Dos viajes".
3.1.2.6.
Monitoreo del sistema de aire secundario.
Cuando un motor frío es puesto en funcionamiento, se ejecuta en el modo de lazo abierto. Durante la operación de lazo abierto, el motor generalmente usa mezcla rica. Un vehículo que usa mezcla rica malgasta combustible y crea emisiones de gases incrementadas, como monóxido de carbono y algunos hidrocarburos. Un sistema de aire secundario inyecta aire en el torrente de gases de escape para ayudar a la operación del convertidor catalítico:
1. Proporciona al convertidor catalítico del oxígeno para combustionar el monóxido de carbono y los hidrocarburos del proceso de combustión durante el precalentamiento de motor.
2. El oxígeno adicional inyectado en el flujo de gases de escape también ayuda el convertidor catalítico a llegar a la temperatura operativa más rápidamente durante períodos de precalentamiento. El convertidor catalítico debe calentarse hasta la temperatura operativa para trabajar apropiadamente. El monitoreo del sistema secundario de aire busca la integridad de operación del sistema y sus componentes, y hace pruebas de los defectos en el sistema.
La computadora opera este monitoreo una vez por el viaje. El monitoreo de sistema secundario de aire es un monitoreo "Dos viajes".
3.1.2.7.
Monitoreo de aire acondicionado (A / C).
El monitoreo del A / C detecta fugas en sistemas de aire acondicionado que utilizan refrigerante R - 12.
3.1.2.8.
Monitoreo de sistema de EVAP.
Los vehículos de OBDII están equipados con un sistema EVAP que ayuda a impedir que los vapores de combustible se vayan al aire. El sistema EVAP lleva emanaciones del tanque de combustible al motor donde son quemados durante la combustión. El sistema de EVAP podría constar de una lata de carbón, tapa del tanque de combustible, solenoide de limpieza, solenoide de abertura, detector de monitoreo, fuga de circulación y tubos conectados, líneas y mangueras.
Fuente: www.babcox.com/editorial/us/us10126.htm
Las emanaciones son llevadas del tanque de combustible a la lata de carbón (charcoal canister) por mangueras o tubos. Las emanaciones son guardadas en la lata de carbón. La computadora controla la circulación de vapores de combustible del canister al motor vía un solenoide de limpieza o de purga. La computadora energiza el solenoide de limpieza (dependiendo del diseño de solenoide). El solenoide de limpieza abre una válvula para permitir que el vacío de motor introduzca los vapores de combustible de la lata en el motor donde los vapores son quemados. El monitoreo de EVAP chequea la circulación de vapor de combustible correcta al motor, y la presión del sistema para pruebas de fugas. La computadora opera este monitoreo una vez por viaje.
El EVAP está diseñado para verificar que la Válvula de Purga del Canister (EVAP) esté funcionando adecuadamente y para controlar el flujo de vapores de combustible que fluyen a través de la válvula desde el canister hacia la isión del motor.
El funcionamiento eléctrico de la válvula de purga del canister (EVAP) es chequeado inicialmente antes que el flujo de testeo comience. Las señales de entrada al PCM de los sensores ECT, sensor IAT, sensor MAF y VSS son utilizadas para conformar las condiciones de ensayo.
El monitoreo del flujo de vapores de combustible no se realizará si el PCM detecta un mal funcionamiento de la válvula de purga del canister (EVAP). El código de diagnóstico (DTC) asociado con una falla eléctrica de la válvula de purga del canister es el P0443 (Mal funcionamiento del circuito del sistema de control de la válvula EVAP - EVAP system control valve circuit malfunction).
Antes que el test de flujo sea realizado, el PCM calculará que cantidad de vapor de combustible está presente durante el purgado con el motor operando. Si la cantidad de vapor calculado está por encima de un valor determinado, fijado en memoria del PCM, este asumirá que hay vapor fluyendo hacia el motor y que la válvula de purga
del canister (EVAP) está funcionando adecuadamente. Si estas condiciones se cumplen, la parte correspondiente al test de control de vapor de combustible durante la marcha en vacío del motor será evitado y el test se dará por completado.
Si la cantidad de vapor de combustible calculado está por debajo del valor determinado, fijado en memoria del PCM, la parte correspondiente al test de control de vapor durante la marcha en vacío debe ser ejecutada para verificar que la válvula de purga del canister esté funcionando correctamente. Una presunción del test de flujo, es que a pesar del vapor de combustible que pueda contener el canister, una porción importante del mismo está siendo liberado a la atmósfera.
El test de flujo calculará el incremento de aire itido requerido por el PCM cuando el ciclo activo de la válvula de purgado del canister es reducido desde un 75% a un 0%. Si el incremento calculado en el flujo de aire itido excede un valor prefijado como umbral mínimo, el PCM asumirá que la válvula de purga del canister (EVAP) está funcionando correctamente. Si el incremento calculado del flujo de aire itido en las condiciones citadas es insignificante, la EVAP, válvula de purga del canister, no está funcionando correctamente. El DTC asociado con esta condición es el P1443 (EVAP, mal funcionamiento del sistema de control de la válvula de purga del canister - EVAP control system purge control valve malfunction). La lámpara indicadora de mal funcionamiento (MIL) (Item 2 - Fig. 4) será activada para los códigos, DTCs P0443 y P1443 después de que se repita dos veces el fallo por lo que es un monitoreo "Dos viaje".
3.1.2.9.
Monitoreo del Control de pérdidas en circuito de gases
de combustible
El Control de pérdidas en el circuito del Sistema de los Gases de Combustible, es una estrategia diseñada para detectar pérdidas de estos gases a través de una perforación o abertura igual o mayor que 1.016 mm (0.040 pulgadas), en dicho circuito.
El funcionamiento apropiado de los componentes individuales del circuito también son examinados. El control del sistema depende de los componentes del mismo para posibilitar la aplicación de vacío al tanque de combustible y luego cerrar totalmente la salida de los gases hacia la atmósfera. La presión en el tanque de combustible es luego controlada para determinar en un período tiempo estipulado el vacío total perdido (bleed-up).
Las informaciones de sensores requeridas por el PCM son: temperatura del líquido refrigerante de motor (ECT). temperatura del aire itido (IAT). masa de aire itido (MAF). velocidad del vehículo (VSS). nivel del combustible en el tanque (FLI). presión en el tanque de combustible (FTP).
Durante un ciclo conducción realizado para verificar una reparación, la PCM en que haya sido borrados los DCT se desviará del mínimo tiempo requerido para completar el control de pérdidas en el circuito.
El monitoreo no será realizado si: La llave de o de motor es llevada a la posición OFF después de que en el PCM haya sido borrados los códigos. El monitoreo de pérdidas en el circuito de gases de combustible no será realizado si un fallo en el MAF ha sido detectado. El monitoreo no comenzará a realizarse hasta que el control de las resistencias de calentamiento de los sensores de oxígeno no haya sido completado.
El monitoreo de pérdidas en el circuito de gases de combustible es ejecutado por los componentes del sistema como se detalla a continuación: 1. La función de la válvula de purga del canister (EVAP) es crear vacío en el tanque de combustible. Un ciclo de activación (duty cycle) mínimo de un 75% de esta válvula debe cumplirse antes que el control pueda comenzar.
2. El solenoide de ventilación del canister (CV) se cerrará al unísono con la válvula de purga del canister permaneciendo cerrado el mismo tiempo que éste con el fin de sellar el sistema de ventilación hacia la atmósfera y obtener vacío en el tanque de combustible.
3. El sensor de presión del tanque de combustible (FTP) será usado por el sistema de control para determinar si el nivel de vacío tabulado está comenzando a alcanzarse para llevar a cabo el chequeo de pérdidas.
Ciertas aplicaciones en algunos vehículos utilizan con el sistema de control de pérdidas de gases de combustible un sensor FTP remoto insertado en la línea. Una vez que el nivel de vacío tabulado es alcanzado en el tanque de combustible, el cambio del nivel de vacío sufrido en un período de tiempo predeterminado dirá si existen pérdidas o no en el sistema.
4. Si el nivel de vacío inicial no puede ser alcanzado, el código de fallas DTC P0455 (pérdida importante detectada) será colocado. El control de pérdidas en el sistema será interrumpido y no se continuará con el mismo. Si el nivel de vacío predeterminado es sobrepasado, una falla en el circuito existe y el código de fallos DTC P1450 (no se puede producir sangrado de vacío en el tanque) es registrado.
En este caso también el control de pérdidas será interrumpido y no se continuará con el mismo. Si el nivel de vacío estipulado en el tanque de combustible para este monitoreo es alcanzado, la pérdida de vacío en dicho tanque será calculada para un período de tiempo predeterminado. El cambio del nivel de vacío calculado será
comparado con la pérdida que se produciría a través de una abertura de 1,016 mm (0,040 pulgadas), nivel de pérdida ya tabulado en memoria.
Si la pérdida calculada es menor a la tabulada en memoria, el sistema será dado como que funciona correctamente. Si la pérdida calculada excede al nivel tabulado en memoria, el test será interrumpido y reiniciado hasta tres veces. Si la pérdida calculada continua excediendo el nivel tabulado en memoria después de los tres test, un chequeo de generación de vapor debe ser realizado antes que el código de fallos DTC P0442 (pérdida pequeña detectada) sea almacenado.
Este test es realizado retornando al circuito del sistema a la presión atmosférica, cerrando para ello la válvula de purga del canister y abriendo el solenoide de ventilación del canister CV. Una vez que el PCM observa a través del sensor de presión FTP que la presión en el tanque de combustible se encuentra a la presión atmosférica, cerrará la válvula solenoide CV, sellando así el circuito.
La presión en el tanque de combustible se irá incrementando debido a la generación de vapores que no son liberados, esto sucederá y será observado por un período de tiempo predeterminado en memoria del PCM y la presión alcanzada en dicho período será comparada con un valor de umbral también ya predeterminado. Si la presión en el tanque de combustible, al fin de dicho período, supera el umbral predeterminado, el resultado fallido de los tres test realizados anteriormente será invalidado.
5. El control de pérdidas en el circuito de vapores de combustible se dará por aprobado y completado. Si la presión en el tanque de combustible, al fin de dicho período, no logra superar el umbral predeterminado, el resultado de los tres test de prueba de fugas será dado como válido y el código de fallos DTC P0442 será almacenado.
6. La lámpara indicadora de mal funcionamiento (MIL) es activada cuando se detectan fallos correspondientes a los códigos DTCs P0442, P0455 y P1450 (o P0446) después que se repita por dos veces la misma falla. La MIL puede ser también activada de la misma manera por fallos detectados en cualquiera de los componentes que forman parte del sistema. Los códigos de fallos correspondientes a los DTC P0443, P0452, P0453 y P1451, se presentaran si se presentan fallos durante el control del conjunto de componentes (Comprehensive Component Monitor - CCM).
Fuente: Soporte magnético, Ing Vicente Celani, Curso de Graduación 2007
3.2. Protocolos de comunicación11.
La norma OBD II es un conjunto de normalizaciones que procuran facilitar el diagnostico y disminuir el índice de emisiones de contaminantes de los vehículos, y es muy extensa y está asociada a otras normas como SAE e ISO.
De todo este conjunto de normas que puede llevarnos a la confusión debemos quedarnos con las siguientes normas que explican con detalle estos sistemas: 11
Para ampliar el tema con respecto a lo que rige cada protocolo visitar las páginas web: http://www.mediakit2010.com/modules.php?name=Content&pa=showpage&pid=140 http://en.wikipedia.org/w/index.php?title=ISO_15765‐4&action=edit http://tuselectronicos.com/content/view/58/45/
ISO9141
Vehículos
de
carretera
-
Sistemas
de
Diagnostico
-
Requerimientos para el intercambio de información digital. ISO9141-2
Vehículos de carretera - Sistemas de Diagnostico -Paret 2 CARB requerimientos para el intercambio de información digital.
ISO9141-2
CARB requerimientos para el intercambio de información
Modif.1
digital.
ISO9141-3
Vehículos de carretera - Sistemas de Diagnostico -Parte 3 Verificación de la comunicación entre el vehículo y la "Scan tool" OBD II.
ISO11898
Vehículos de carretera - Intercambio de información digital Red de Area de Control (CAN) para comunicación de alta velocidad.
ISO11898
Vehículos de carretera - Intercambio de información digital -
Modf.1
Red de Area de Control (CAN) para comunicación de alta velocidad.
ISO11519-1
Vehículos de carretera - Comunicaciones serie de baja velocidad Parte.1 Definiciones generales.
ISO11519-2
Vehículos de carretera - Comunicaciones serie de baja velocidad Parte.2 Red de area de control de baja velocidad (CAN)
ISO11519-2
Vehículos de carretera - Comunicaciones serie de baja velocidad
Modf.1
Parte.2 Red de area de control de baja velocidad (CAN)
ISO11519-3
Vehículos de carretera - Comunicaciones de datos serie de baja velocidad Parte.3 Red de Area del vehículo (VAN)
ISO11519-3
Vehículos de carretera - Comunicaciones de datos serie de baja
Mod.1
velocidad Parte.3 Red de Area del vehículo (VAN)
Fuente: http://tuselectronicos.com/content/view/58/45/
Estas pueden localizarse en la organización Suiza ISO12, también son un punto de referencia muy importante las normas SAE13, ya que las normas Europeas ISO están basadas en las americandas SAE.
SAE J1962
Conector de diagnósticos.
SAE J1978
OBD II, Equipo de diagnóstico.
SAE J1979
Modos de TEST para diagnósticos E/E.
SAE J2012
Formatos y mensajes de Códigos de problemas de diagnósticos.
Fuente: http://tuselectronicos.com/content/view/58/45/
Otras normas a tener en consideración como punto de referencia son las siguientes:
ISO4092
Sistemas de diagnóstico para vehículos de motor - Vocabulario.
ISO/TR
Vehículos
7637-0
conducción y acoplamiento.
ISO7637-1
Vehículos de carretera - Perturbaciones eléctricas por
de
carretera
-
Interferencias
eléctricas
por
conducción y acoplamiento ISO15031-5
Vehículos
de
carretera
-
Sistemas
de
diagnóstico
-
Comunicación entre el vehículo y equipos externos - Parte 5: Emisión relativa a los servicios de diagnóstico. ISO7498
Sistemas de proceso de información - Interconexión de sistemas abiertos - Modelos de referencia básicos.
12 13
http://www.iso.org/ http://www.sae.org/
ISO8802-2
Sistemas de proceso de información - Redes de Area Local Parte-2 Control de enlaces lógicos.
ISO8802-3
Información - Tecnología - Redes de Area Local - Parte 3: múltiple con detección de colisión (CSMA/CD) métodos de y especificaciones de la capa física.
ISO8509
Sistemas de proceso de la información - Interconexión de sistemas abiertos - Convención de servicios
Fuente: http://tuselectronicos.com/content/view/58/45/
Se usan básicamente cinco tipos de comunicación que pueden ser utilizadas y son escogidas por los diferentes fabricantes de vehículos: SAE J 1850 VPW - modulación por ancho de pulso variable Variable Pulse Whit. SAE J 1850 PWM - modulación por ancho de pulso Pulse With Module. ISO 9141-2 KWP – protocolo de palabra clave Key Word Protocol. CAN14 – Red de control de trabjo Controller Area Network.
Los diversos pines del conector son usados de diferentes formas de acuerdo a las especificaciones internas de cada fabricante. Hay 5 combinaciones de pines de salida “pinout” dentro del padrón, cada uno de los cuales usa un protocolo de comunicaciones específico, abajo se da una lista:
Protocolo
Uso de los pines del conector
J1850 VPW
2, 4, 5, y 16, pero no 10
ISO 9141-2
4, 5, 7, 15 (ver Nota) y 16
14
Este protocolo está siendo usado en los vehículos de este año y posteriores, cuando la OBD2 entro en vigencia este aún no existía. Para mayor información acerca del mismo remitirse a la página web: http://en.wikipedia.org/wiki/Controller_Area_Network
J1850 PWM
2, 4, 5, 10 y 16
KWP2000 / (ISO 14230)
4, 5, 7, 15 (ver Nota) y 16
CAN (Controller Area Network)
4, 5, 6, 14 y 16
Fuente: Soporte magnético, Ing Vicente Celani, Curso de Graduación 2007
Nota: para las comunicaciones de la ISO / KWP2000, el pin 15 (línea L) no es requerido siempre. El pin 15 fue usado a antes en automóviles de la ISO / KWP2000 "Despertar" la ECU antes de que la comunicación pudiera empezar en el pin 7 (línea K). Después los automóviles se comunicaban usando solamente el pin 7(línea K).
Vehículo todo terreno y automóviles de MG: hemos notado que muchos modelos de vehículo todo terreno y MG no tienen el pin 5 (masa de señal). Esto puede impedir a algunas herramientas diagnosticar al "Inicializar" ya que no usan el pin 5 como tierra para la circuitería.
Los protocolos de comunicación usados actualmente por los diferentes fabricantes son: FABRICANTE
PROTOCOLO DE COMUNICACIÓN
Ford en USA
SAE J 1850 VPW
GM
SAE J 1850 PWM
Chrysler, Europa
Ford y
en ISO 9141-2 KWP
marcas
europeas y asiáticas Fuente: Soporte magnético, Ing Vicente Celani, Curso de Graduación 2007
Como una guía preliminar, los protocolos son encontrados en automóviles de los siguientes fabricantes en general:
PROTOCOL
MANUFACTURERS
J1850 VPW
General Motors, Chrysler
J1850 PWM
Ford models to 2003 with EEC-V engine management system, this includes: Ford Cougar (all UK models), Ford Puma (1.6 and 1.7), Ford Fiesta Zetec models to 2003, Ford Mondeo Zetec models to 2003, Ford Focus to 2003 (and some of the newer Ford-based Jaguars, e.g. S-Type)
ISO / KWP
Most European and Asian manufacturers, e.g. Alfa Romeo, Audi, BMW, Citroen, Fiat, Honda, Hyundai, Jaguar (X300, XK series and X-Type), Jeep, Kia, Land Rover, Mazda, Mercedes, Mitsubishi, Nissan, Peugeot, Renault, Saab, Skoda, Subaru, Toyota, Vauxhall, Volkswagen (VW), Volvo
CAN
Ford 2004+ Fiesta, Fusion, Mondeo, Focus models Mazda RX-8 Vauxhall Vectra 2003+ model Most new models from approx. 2004 -
Fuente: Soporte magnético, Ing Vicente Celani, Curso de Graduación 2007
Algunas de estas marcas han cambiado el uso de los protocolos con el pasar de los años15. 15
Para mayor información acerca de esto remitirse al anexo Apartado B.
Documentos de los requerimientos de SAE sobre OBD-II
J1962 - Define el tipo de conector físico usado para la interfaz de OBD II. J1850 - Define un protocolo de datos por entregas. Hay 2 variantes de 10.4 kbit / s (cable solo, VPW) y 41.6 kbit / s (2 cables, PWM). Usado por fabricantes de los EE.UU principalmente., también conocido como PCI (Chrysler, 10.4K), clase 2 (GM, 10.4K), y S (Ford, 41.6K). J1978 - Define los requerimientos operativos mínimos para las herramientas de escaneo de OBD II J1979 - Define los requerimientos para los modos de prueba de diagnóstico J2012 - Define los requerimientos de los códigos de falla. J2178-1 - Define los requerimientos para los formatos de mensajes en la red de trabajo y las tareas de los diferentes componentes. J2178-2 - Da las definiciones de parámetro de datos J2178-3 - Define los requerimientos para documentos de identidad de marco de mensaje de la red para los encabezamientos de un solo byte. J2178-4 - Define los requerimientos para los mensajes de la red con tres encabezamientos de byte. J2284-3 - Define los 500K físico de CAN y la capa de enlace de daatos.
Requerimientos ISO
ISO 9141: Sistemas de diagnósico de vehículos de carretera. International Organization for Standardization, 1989. Parte 1: Requerimientos para intercambiar información digital
Parte 2: Requisitos de la CARB para cruce de la información digital Parte 3: Verificación de la comunicación entre vehículo y escáner de OBD II. ISO 11898: Controlador de la red de área para vehículos de carretera (CAN). International Organization for Standardization, 2003. Parte 1: Capa de enlace de datos y reconocimiento físico marcado. Parte 2: Unidad de mediana de alta velocidad Parte 3: Interfaz dependiente de baja velocidad y tolerante a fallos y medio. Parte 4: Comunicación provocada por vez ISO 14230: Diagnósticos de sistemas Keyword Protocol 2000 para vehículos de carretera. International Organization for Standardization, 1999. Parte 1: Capa física Parte 2: Capa de enlace de datos Parte 3: Aplicación de capas Parte 4: Requerimientos para sistemas relacionados con la emisión de gases de escape. ISO 15765: Diagnósticos sobre la red CAN para vehículos de carretera. International Organization for Standardization, 2004. Parte 1: Información General Parte 2: Servicios de la capa de red. Parte 3: Puesta en práctica de servicios de diagnóstico unificados (UDS on CAN) Parte 4: Requerimientos para sistemas relacionados con la emisión de gases de escape.
CAPÍTULO IV: Evolución hacia OBDIII
1.1.
Definición de OBDIII.
1.2. Ventajas de OBDIII. 1.3. Tecnologías que se usarán en OBDIII.
4.1. Definición de OBDIII
El OBDIII significa On Board Diagnostic Third Generation o en español Diagnósticos de A Bordo Tercera Generación. Y consiste básicamente en un programa para minimizar el borrado de datos entre la detección de un mal funcionamiento en cualquier sistema que tenga que ver con el control del nivel de emisiones que son requeridos por el sistema OBDII y la reparación del vehículo.
Actualmente se está desarrollando la planeación de OBDIII, el cual podrá tomar a OBDII un paso hacia la comunicación de fallas a distancia vía satélite. Utilizando un pequeño radio comunicador que es usado para herramientas electrónicas, un vehículo equipado con OBDIII podrá ser posible reportar problemas de emisiones directamente a una agencia reguladora de emisiones (EPA). El radio comunicador podrá comunicar el numero VIN del vehículo y podrá diagnosticar códigos que estén presentes. El sistema podrá reportar automáticamente problemas de emisiones vía celular o un vinculo vía satélite cuando el foco de mal función (MIL) este encendido, o responda a un requerimiento de un celular, o satélite cuando suceda los análisis de emisiones.
Para esto el sistema requiere dos elementos básicos: De las lecturas presentes del sistema OBDII de vehículos en uso. De la tecnología satelital que le permitirá directamente a los dueños de los vehículos con códigos de fallas realizar reparaciones inmediatas.
4.2. Ventajas de OBDIII
Algunas ventajas que ofrecerá esta nueva generación de diagnósticos de a bordo serán: Ante una falla el conductor podrá pedir ayuda por celular vía satélite, o deberán decirle la forma de solucionarlo.
El sistema se podrá auto diagnosticar desde el arranque hasta el apagado de motor. La central de control o PCM pasará a modo seguro o auto calibración en el caso de una falla, para minimizar la posibilidad de contaminación, y guardará la falla en memoria viva para después revisarla con el scanner. Se habla de un scanner tipo bíper con una explicación básica de la mal función y sugerencias para la reparación que vendrá en las unidades con OBD 3 como un servicio agregado del fabricante al dueño del vehículo. Los vehículos con fallas podrán ser localizados en cualquier lugar que estén gracias a las comunicaciones vía satélite Básicamente OBD 3 viene a revolucionar el diagnostico del motor, más sencillo, con mayor claridad para el diagnostico existiendo mayor cantidad de códigos de fallas y el diagnóstico será más sencillo. Se reducirán las horas invertidas para búsqueda de fallas. Se exigirá la producción de escáner y lectores de código de bajo precio y actualizables. Ahora cualquier técnico en inyección de combustible o mecánico podrá arreglar sin dudar del componente dañado de un vehículo con estos sistemas. Otra ventaja es la reducción de precios de escanners ya que la EPA ha exigido un scanner reader es decir un lector de fallas y borrado de un costo bajo y accesible así como la posibilidad de actualizaciones a bajo precio, tal es el caso de OTC, sacaron un scanner para OBD 1, en el caso de ACTRON mediante su división SUN-PRO han bajado los costos del scanner solo para unidades OBD 2 genéricas.
NOTA: Lo que se ve como una gran desventaja y problema a la hora de la implementación de este sistema es el asunto del respeto a la privacidad de las personas que estén conduciendo el vehículo.
4.3. Tecnologías que se usarán en OBDIII
Tres caminos para enviar y recibir datos: Lector de camino (roadside). Tal como se dijo en las ventajas estos deberán ser accesibles a todos los interesados en el arreglo y mantenimiento de vehículos con sistemas OBDIII y estos deberán ser comercializados a bajo precio. En cuanto a la parte como equipo deberán venir con más códigos de fallas o sus interpretaciones y con todos los requerimientos para OBDII. Red de estación local (local station network). Satélite. Con la tecnología actual se podrá hacer uso de muchas de las aplicaciones satelitales para el diagnóstico y monitoreo constante para mayor seguridad de los ocupantes.
CONCLUSIONES:
El diseño de estos sistemas (OBDII) tomó muchos años, pero finalmente se ha logrado disminuir y controlar los niveles de contaminación que eran provocados por los diferentes sistemas en los vehículos.
Gracias a las exigencias que les ponen (CARB y EPA) a las diferentes casas constructoras de vehículos se ha logrado un gran avance tecnológico en los automóviles, siendo esto beneficioso en todo sentido ya que la nueva versión de los diagnósticos de a bordo, el sistema OBDII, está disponible en su mayoría y puede ser usada por cualquier trabajador de la rama automotriz.
El a la información (en un 70%) es una gran ayuda para todas las personas que no poseen una posición económica alta para invertir en equipo y este de una sola marca, con lo que, realizar diagnósticos en automóviles equipados bajo los requerimientos de este sistema era un verdadero caos y existía un monopolio absoluto por parte de los centros de revisión vehicular propiedad de los concesionarios automotrices, el mismo que actualmente ya no existe y se logro abrir el mercado para nuevos centros de revisión vehicular particulares.
Todos los monitoreos que se tienen que realizar por la parte electrónica (ECU) de un vehículo a través de los distintos sensores ubicados estratégicamente en este, han logrado que se pueda tener un elevado control en el funcionamiento y rendimiento de la gran mayoría de los elementos que intervienen en la puesta en marcha del automóvil y posterior conducción del mismo.
La tecnología que se vendrá a poner en marcha con la nueva versión de los diagnósticos de a borda, los sistemas OBD3, es tecnología de punta y estará a disposición de todos los compradores de vehículos en el mundo entero, siendo el
objetivo principal de estos sistemas la seguridad y comodidad de los pasajeros, aunque se corre con el riesgo de invadir el derecho de privacidad del cual deben gozar todas las personas por el uso de satélites para monitorear en todo momento a los sistemas que intervienen en el control de la emisión de gases combustionados, y los que estén a cargo de la seguridad de estos.
RECOMENDACIONES:
Muchos procedimientos de prueba requieren que las precauciones tomadas eviten los accidentes que puedan desembocar en lesiones personales y/o daños para el vehículo o equipo de prueba16.
Observar siempre las precauciones generales de seguridad:
Para prevenir los serios problemas que producen tanto el monóxido de carbono como los otros compuestos químicos resultantes de la combustión de gases realizar las operaciones requeridas en ambientes ventilados.
Para proteger tus ojos de objetos propulsados como líquidos tanto calientes o corrosivos, usar siempre protectores de ojos aprobados para el trabajo industrial.
Para evitar lesiones serias por elementos en movimiento, revisar estos elementos siempre y guarda una distancia segura de estas partes con otros objetos potencialmente en movimiento también.
16
Leer siempre el manual del servicio del vehículo y seguir las precauciones de seguridad indicadas antes y durante cualquier prueba o procedimiento del servicio
Para prevenir las quemaduras graves, evita el o con partes calientes del motor.
Antes de empezar a realizar pruebas o resolver problemas en un motor, asegúrate de que el freno de estacionamiento esté accionado. Pon la transmisión en la marcha de estacionamiento o parking (para transmisión automática) o la posición neutra (para la transmisión manual)..
No conectar o desconectar el equipo de prueba cuando el encendido está en ON porque puede dañar los componentes electrónicos de equipo de prueba y del vehículo. Pon el encendido en OFF antes de conectar o desconectar el escáner o lector de claves del conector de enlace de datos (DLC) del vehículo.
Para prevenir el daño para la computadora interna cuando se tomen las mediciones eléctricas del vehículo, siempre usar un multimetro digital con al menos 10 mega ohmios de impedancia interna.
Para evitar explosiones por los elementos flamables en el vehículo tener precaución de chispas por conexiones eléctricas mal instaladas o por cerillos, cigarrillos, etc, y sobre todo no fumar cerca del vehículo mientras se estén realizando pruebas.
No llevar puesto ropa holgada o joyas cuando se vaya a realizar cualquier tipo de trabajos en un vehículo. Ya que la ropa holgada puede agarrarse en el ventilador, las poleas, etcétera. En cuanto a las joyas son muy buenas conductoras y pueden causar una quemadura grave si hace o entre alguna alimentación de voltaje del vehículo y tierra.
Después de tomar todas estas precauciones generales estamos listos para empezar a realizar los procedimientos de diagnóstico y reparación en un vehículo.
Pero antes de empezar a revisar los problemas eléctricos o electrónicos que se puedan dar en el automóvil revisar los problemas mecánicos como el nivel de aceite bajo, las mangueras, el cableado o los conectores eléctricos dañados pueden causar un mal rendimiento del motor y esto podría causar que se genere un código de falla. Arreglar cualquier problema mecánico conocido antes de llevar a cabo alguna prueba.
Verifica los siguientes párrafos antes de empezar cualquier prueba eléctrica o electrónica:
Examinar el aceite del motor, de la servodirección, de la transmisión (si fuera el caso), el refrigerante del motor y otros fluidos en busca de niveles correctos. Asegurarse de que el filtro de aire esté limpio y en buenas condiciones. Asegurarse de que todos los conductos del filtro de aire estén apropiadamente conectados. Examinar los conductos de filtro de aire en busca de agujeros, rasgaduras o rajaduras. Asegurarse de que todas las poleas del motor estén en buenas condiciones. Asegurar los enlaces mecánicos de los sensores del motor (obturador de la gasolina, del puesto de la palanca de cambios, la transmisión, etc.) y que estén apropiadamente conectados. Ver el manual del servicio del vehículo para las ubicaciones de los mismos. Examinar todas las mangueras de goma (radiador) y mangueras de acero (de vacío / combustible) en busca de fugas, rajaduras, obstrucción u otro daño. Asegurarse de que todas las mangueras esten dirigidas y conectadas apropiadamente. Asegurarse de que todas las bujías de encendido estén limpias y en buenas condiciones. Buscar cables de bujía de encendido dañados y holgados e inconexos o faltantes.
Asegurarse de que las terminales de la batería estén limpias y ajustadas. Buscar conexiones descompuestas o corroídas. Asegurarse de que la carga de la batería sea la correcta. Examinar todo el cableado eléctrico y arneses en busca de la conexión correcta. Estar seguro de que la protección de los cables están en buena condición, y que no existan cables sin protección. Asegurarse de que el vehículo esté mecánicamente bien. Si es necesario, efectuar el chequeo de compresión del motor.
BIBLIOGRAFÍA:
Soporte Magnético / Compilador Ing. Vicente Celani Soporte Magnético / Compilador Ing. Guillermo Campos Soporte Magnético / Compilador Empresa “CISE Electronics” Microsoft Encarta 2006.
REFERENCIAS EN INTERNET:
http://autorepair.about.com http://en.wikipedia.org/wiki/On_Board_Diagnostics17 http://tuselectronicos.com http://www.autoinc.org http://www.aa1car.com www.babcox.com
http://www.canobd2.com http://www.etools.org www.fordscorpio.co.uk
http://www.mediakit2010.com http://www.obd2.cl/universal.htm http://www.redtecnicaautomotriz.com http://www.rolcar.com.mx http://www.wrenchead.ca
17
En esta página se encuentran los links que se usan en este trabajo con relación a wikipedia.
Ingeniería Mecánica Automotriz UPS: CAPITULO II: Descripción del Sistema
2007
ANEXOS
Apartado A 1
Ingeniería Mecánica Automotriz UPS: CAPITULO II: Descripción del Sistema
2007
CTOX
Continuous
Trap
Oxidizer
Los siguientes acrónimos o términos CTP
son usados por SAE:
Closed
Throttle
Position ABS
Antilock
Brake
DEPS
System
Engine
Position Sensor
A/C
Air Conditioning
AC
Air Cleaner
AIR
Secondary
A/T
Digital
DFCO
Decel Fuel Cut-off Mode
Air
DFI
Direct Fuel Injection
Injection
DLC
Data Link Connector
Automatic
DTC
Diagnostic Trouble
Transmission
or
Code
Transaxle
DTM
SAP
Accelerator Pedal
B+
Battery
Diagnostic
Test
Mode
Positive
EBCM
Voltage
Electronic
Brake
Control Module
BARO
Barometric Pressure
CAC
Charge Air Cooler
Traction
CFI
Continuous
Module
EBTCM
Fuel
Electronic
Brake Control
Injection
EC
Engine Control
CL
Closed Loop
ECM
Engine
CKP
Crankshaft Position
Module
Sensor CKP REF
ECL
Crankshaft
Camshaft
Engine
Coolant
Level
Reference CMP
Control
ECT Position EEPROM
Camshaft Reference
CO
Carbon Monoxide
CO2
Carbon Dioxide
P
Clutch
Coolant
Temperature
Sensor CMP REF
Engine
Electrically Erasable PROM
EFE
Early
Fuel
Evaporation EGR
Pedal
Exhaust
Gas
Recirculation
Position
2
Ingeniería Mecánica Automotriz UPS: CAPITULO II: Descripción del Sistema
2007
EGRT
EGR Temperature
HC
Hydrocarbon
EI
Electronic Ignition
HVS
High Voltage Switch
EM
Engine Modification
HVAC
Heating Ventilation
EPROM
Erasable PROM
EVAP
Evaporative
IA
Intake Air
Emission System
IAC
Idle Air Control
FC
Fan Control
IAT
Intake
FEEPRO
Flash
M
Erasable PROM
FF
Flexible Fuel
FP
Fuel Pump
FPROM
Flash
and A/C System
Temperature
Electrically IC
Fuel Trim
FTP
Federal
ICM
Governor
IFI
Generator
GND
Ground
H20
Water
HO2S
Heated
Test
Upstream
Control
Indirect
Fuel
IFS
Inertia Fuel Shutoff
I/M
Inspection/Maintena nce
Control IPC
Instrument
Cluster ISC
Idle Speed Control
Fuente: http://autorepair.about.com/library/glo
Oxygen
ssary/bl-003.htm
Sensor HO2S1
Ignition
Injection
Module GEN
Control
Module
Erasable
Procedure GCM
Ignition Circuit
PROM FT
Air
Heated
Oxygen Sensor HO2S2
Up or Downstream Heated
Oxygen
Sensor HO2S3
Downstream Heated Oxygen Sensor
Apartado B 3
Ingeniería Mecánica Automotriz UPS: CAPITULO II: Descripción del Sistema
2007
OBDII Generic Communication Protocols by Manufacturer [Revised Feb. 17, 2003] Protocolos Genéricos de Comunicación por Fabricante hasta el año 2000:
4
Ingeniería Mecánica Automotriz UPS: CAPITULO II: Descripción del Sistema
2007
Fuente: http://www.etools.org/files/public/generic-protocols-02-17-03.htm (1/3)
5
Ingeniería Mecánica Automotriz UPS: CAPITULO II: Descripción del Sistema
2007
Protocolos Genéricos de Comunicación por Fabricante desde el año 2001 hasta el año 2004:
6
Ingeniería Mecánica Automotriz UPS: CAPITULO II: Descripción del Sistema
2007
Fuente: http://www.etools.org/files/public/generic-protocols-02-17-03.htm (2/3)
7
Ingeniería Mecánica Automotriz UPS: CAPITULO II: Descripción del Sistema
2007
Protocolos Genéricos de Comunicación por Fabricante desde el año 2005 hasta el año 2008:
8
Ingeniería Mecánica Automotriz UPS: CAPITULO II: Descripción del Sistema
2007
Fuente: http://www.etools.org/files/public/generic-protocols-02-17-03.htm (3/3) Nota 3: *Para 2002 MY y en adelante, los vehículos FORD no-CAN serán S (J1850-41.6) a menos que abajo se haga notar otro diferente. 1996- 1.8L Escort Protocol ISO-9141 (motor Mazda) 1996&1997- 2.5L Probe Protocol ISO-9141 (motor Mazda) 1996&1997- All Aspire Protocol ISO-9141 (motor Mazda) Los modelos de todos los años- Mercury Villagers Protocol ISO-9141 (motor Nissan) Nota 4: VW ha respondido para los modelos del año 2002. Los modelos de años siguientes están en blanco y deben ser llenados por BMW. Nota General: Esta nota indica la no respuesta de esta compañía. 9
Ingeniería Mecánica Automotriz UPS: CAPITULO II: Descripción del Sistema
2007
10
$SSHQGL[& '7&V(QJOLVK This section contains the J2012 Recommended Powertrain Diagnostic Trouble Codes. These codes are recommendations not a requirement. Manufacturers may not follow these, but most do. Check your vehicle’s service manual for DTC meaning if you think the codes you are getting do not make sense. : 1) Visual inspections are important! 2) Problems with wiring and connectors are common, especially for intermittent faults. 3) Mechanical problems (vacuum leaks, binding or sticking linkages, etc.) can make a good sensor look bad to the computer. 4) Incorrect information from a sensor may cause the computer to control the engine in the wrong way. Faulty engine operation might even make the computer show a known good sensor as being bad! P0001 Fuel Volum e R egulator C ontrol C ircuit/O pen P0002 Fuel Volum e R egulator C ontrol C ircuit R ange/P erform ance P0003 Fuel Volum e R egulator C ontrol C ircuit Low P0004 Fuel Volum e R egulator C ontrol C ircuit H igh P0005 Fuel S hutoff Valve C ontrol C ircuit/O pen P0006 Fuel S hutoff Valve C ontrol C ircuit Low
P0012 A C am shaft Position - Tim ing O ver-R etarded (B ank 1) P0013 B C am shaft P osition - A ctuator C ircuit (B ank 1) P0014 B C am shaft P osition - Tim ing O ver-Advanced or S ystem P erform ance (B ank 1) P0015 B C am shaft Position - Tim ing O ver-R etarded (B ank 1)
P0007 Fuel S hutoff Valve C ontrol C ircuit H igh
P0016 C rankshaft P osition – C am shaft P osition C orrelation (B ank 1 S ensor A )
P0008 E ngine P osition System P erform ance (B ank 1)
P0017 C rankshaft P osition – C am shaft P osition C orrelation (B ank 1 S ensor B )
P0009 E ngine P osition System P erform ance (B ank 2)
P0018 C rankshaft P osition – C am shaft P osition C orrelation (B ank 2 S ensor A )
P0010 A C am shaft P osition A ctuator C ircuit (B ank 1)
P0019 C rankshaft P osition – C am shaft P osition C orrelation (B ank 2 S ensor B )
P0011 A C am shaft P osition - Tim ing O ver-A dvanced or S ystem P erform ance (B ank 1)
P0020 A C am shaft P osition A ctuator C ircuit (B ank 2)
DTCs, English
&
P0021 A C am shaft P osition - Tim ing O ver-A dvanced or S ystem P erform ance (B ank 2) P0022 A C am shaft Position - Tim ing O ver-R etarded (B ank 2) P0023 B C am shaft P osition - A ctuator C ircuit (B ank 2) P0024 B C am shaft P osition - Tim ing O ver-A dvanced or S ystem P erform ance (B ank 2) P0025 B C am shaft Position - Tim ing O ver-R etarded (B ank 2) P0026 Intake Valve C ontrol S olenoid C ircuit R ange/P erform ance (B ank 1) P0027 E xhaust Valve C ontrol S olenoid C ircuit R ange/P erform ance (B ank 1) P0028 Intake Valve C ontrol S olenoid C ircuit R ange/P erform ance (B ank 2) P0029 E xhaust Valve C ontrol S olenoid C ircuit R ange/P erform ance (B ank 2) P0030 H O 2S H eater C ontrol C ircuit (B ank 1 S ensor 1) P0031 H O 2S H eater C ontrol C ircuit Low (B ank 1 S ensor 1) P0032 H O 2S H eater C ontrol C ircuit H igh (B ank 1 S ensor 1) P0033 Turbo C harger B y Valve C ontrol C ircuit P0034 Turbo C harger B y Valve C ontrol C ircuit Low P0035 Turbo C harger B y Valve C ontrol C ircuit H igh P0036 H O 2S H eater C ontrol C ircuit (B ank 1 S ensor 2) P0037 H O 2S H eater C ontrol C ircuit Low (B ank 1 S ensor 2)
& &
P0038 H O 2S H eater C ontrol C ircuit H igh (B ank 1 S ensor 2) P0039 Turbo/S uper C harger B y Valve C ontrol C ircuit R ange/P erform ance P0040 O 2 S ensor S ignals S w apped B ank 1 S ensor 1/ B ank 2 Sensor 1 P0041 O 2 S ensor S ignals S w apped B ank 1 S ensor 2/ B ank 2 Sensor 2 P0042 H O 2S H eater C ontrol C ircuit (B ank 1 S ensor 3) P0043 H O 2S H eater C ontrol C ircuit Low (B ank 1 S ensor 3) P0044 H O 2S H eater C ontrol C ircuit H igh (B ank 1 S ensor 3) P0045 Turbo/S uper C harger B oost C ontrol S olenoid C ircuit/O pen P0046 Turbo/S uper C harger B oost C ontrol S olenoid C ircuit R ange/P erform ance P0047 Turbo/S uper C harger B oost C ontrol S olenoid C ircuit Low P0048 Turbo/S uper C harger B oost C ontrol S olenoid C ircuit H igh P0049 Turbo/S uper C harger Turbine O verspeed P0050 H O 2S H eater C ontrol C ircuit (B ank 2 S ensor 1) P0051 H O 2S H eater C ontrol C ircuit Low (B ank 2 S ensor 1) P0052 H O 2S H eater C ontrol C ircuit H igh (B ank 2 S ensor 1) P0053 H O 2S H eater R esistance (B ank 1 S ensor 1) P0054 H O 2S H eater R esistance (B ank 1 S ensor 2) P0055 H O 2S H eater R esistance (B ank 1 S ensor 3) P0056 H O 2S H eater C ontrol C ircuit (B ank 2 S ensor 2)
DTCs, English
P0057 H O 2S H eater C ontrol C ircuit Low (B ank 2 S ensor 2)
P0077 Intake Valve C ontrol S olenoid C ircuit H igh (B ank 1)
P0058 H O 2S H eater C ontrol C ircuit H igh (B ank 2 S ensor 2)
P0078 E xhaust Valve C ontrol Solenoid C ircuit (B ank 1)
P0059 H O 2S H eater R esistance (B ank 2 S ensor 1)
P0079 E xhaust Valve C ontrol Solenoid C ircuit Low (B ank 1)
P0060 H O 2S H eater R esistance (B ank 2 S ensor 2) P0061 H O 2S H eater R esistance (B ank 2 S ensor 3)
P0080 E xhaust Valve C ontrol S olenoid C ircuit H igh (B ank 1)
P0062 H O 2S H eater C ontrol C ircuit (B ank 2 S ensor 3)
P0081 Intake Valve C ontrol S olenoid C ircuit (B ank 2)
P0063 H O 2S H eater C ontrol C ircuit Low (B ank 2 S ensor 3) P0064 H O 2S H eater C ontrol C ircuit H igh (B ank 2 S ensor 3) P0065 A ir A ssisted Injector C ontrol R ange/P erform ance P0066 A ir A ssisted Injector C ontrol C ircuit or C ircuit Low P0067 A ir A ssisted Injector C ontrol C ircuit H igh P0068 M AP/M A F – Throttle P osition C orrelation
P0082 Intake Valve C ontrol S olenoid C ircuit Low (B ank 2) P0083 Intake Valve C ontrol S olenoid C ircuit H igh (B ank 2) P0084 E xhaust Valve C ontrol Solenoid C ircuit (B ank 2) P0085 E xhaust Valve C ontrol Solenoid C ircuit Low (B ank 2) P0086 E xhaust Valve C ontrol S olenoid C ircuit H igh (B ank 2) P0087 Fuel R ail/S ystem P ressure - Too Low
P0069 M anifold A bsolute P ressure – B arom etric P ressure C orrelation
P0088 Fuel R ail/S ystem P ressure - Too H igh
P0070 A m bient A ir Tem perature S ensor C ircuit
P0089 Fuel P ressure R egulator 1 P erform ance
P0071 A m bient A ir Tem perature S ensor R ange/P erform ance
P0090 Fuel P ressure R egulator 1 C ontrol C ircuit
P0072 A m bient A ir Tem perature S ensor C ircuit Low
P0091 Fuel P ressure R egulator 1 C ontrol C ircuit Low
P0073 A m bient A ir Tem perature S ensor C ircuit H igh
P0092 Fuel P ressure R egulator 1 C ontrol C ircuit H igh
P0074 A m bient A ir Tem perature S ensor C ircuit Interm ittent P0075 Intake Valve C ontrol S olenoid C ircuit (B ank 1) P0076 Intake Valve C ontrol S olenoid C ircuit Low (B ank 1)
DTCs, English
P0093 Fuel S ystem Leak D etected – Large Leak P0094 Fuel S ystem Leak D etected – S m all Leak P0095 Intake A ir Tem perature S ensor 2 C ircuit P0096 Intake A ir Tem perature S ensor 2 C ircuit R ange/P erform ance
&
P0097 Intake A ir Tem perature S ensor 2 C ircuit Low
P0118 E ngine C oolant Tem perature C ircuit H igh
P0098 Intake A ir Tem perature S ensor 2 C ircuit H igh
P0119 E ngine C oolant Tem perature C ircuit Interm ittent
P0099 Intake A ir Tem perature S ensor 2 C ircuit Interm ittent/E rratic P0100 M ass or Volum e A ir Flow C ircuit P0101 M ass or Volum e A ir Flow C ircuit R ange/P erform ance P0102 M ass or Volum e A ir Flow C ircuit Low Input P0103 M ass or Volum e A ir Flow C ircuit H igh Input P0104 M ass or Volum e A ir Flow C ircuit Interm ittent P0105 M anifold A bsolute P ressure/B arom etric P ressure C ircuit P0106 M anifold A bsolute P ressure/B arom etric P ressure C ircuit R ange/P erform ance P0107 M anifold A bsolute P ressure/B arom etric P ressure C ircuit Low Input P0108 M anifold A bsolute P ressure/B arom etric P ressure C ircuit H igh Input P0109 M anifold A bsolute P ressure/B arom etric P ressure C ircuit Interm ittent P0110 Intake A ir Tem perature S ensor 1 C ircuit P0111 Intake A ir Tem perature S ensor 1 C ircuit R ange/P erform ance P0112 Intake A ir Tem perature Sensor 1 C ircuit Low P0113 Intake A ir Tem perature Sensor 1 C ircuit H igh P0114 Intake A ir Tem perature S ensor 1 C ircuit Interm ittent P0115 E ngine C oolant Tem perature C ircuit P0116 E ngine C oolant Tem perature C ircuit R ange/P erform ance
P0120 Throttle/P edal P osition S ensor/S w itch "A " C ircuit P0121 Throttle/P edal P osition S ensor/S w itch "A " C ircuit R ange/P erform ance P0122 Throttle/P edal P osition S ensor/S w itch "A " C ircuit Low P0123 Throttle/P edal P osition S ensor/S w itch "A " C ircuit H igh P0124 Throttle/P edal P osition S ensor/S w itch "A " C ircuit Interm ittent P0125 Insufficient C oolant Tem perature for C losed Loop Fuel C ontrol P0126 Insufficient C oolant Tem perature for S table O peration P0127 Intake A ir Tem perature Too H igh P0128 C oolant Therm ostat (C oolant Tem perature B elow Therm ostat R egulating Tem perature) P0129 B arom etric P ressure Too Low P0130 O 2 S ensor C ircuit (B ank 1 S ensor 1) P0131 O 2 S ensor C ircuit Low Voltage (B ank 1 S ensor 1) P0132 O 2 S ensor C ircuit H igh Voltage (B ank 1 S ensor 1) P0133 O 2 S ensor C ircuit S low R esponse (B ank 1 S ensor 1) P0134 O 2 S ensor C ircuit N o A ctivity D etected (B ank 1 S ensor 1) P0135 O 2 S ensor H eater C ircuit (B ank 1 Sensor 1) P0136 O 2 S ensor C ircuit (B ank 1 S ensor 2)
P0117 E ngine C oolant Tem perature C ircuit Low
& &
DTCs, English
P0137 O 2 S ensor C ircuit Low Voltage (B ank 1 S ensor 2)
P0157 O 2 S ensor C ircuit Low Voltage (B ank 2 S ensor 2)
P0138 O 2 S ensor C ircuit H igh Voltage (B ank 1 S ensor 2)
P0158 O 2 S ensor C ircuit H igh Voltage (B ank 2 S ensor 2)
P0139 O 2 S ensor C ircuit S low R esponse (B ank 1 S ensor 2)
P0159 O 2 S ensor C ircuit S low R esponse (B ank 2 S ensor 2)
P0140 O 2 S ensor C ircuit N o A ctivity D etected (B ank 1 S ensor 2)
P0160 O 2 S ensor C ircuit N o A ctivity D etected (B ank 2 S ensor 2)
P0141 O 2 S ensor H eater C ircuit (B ank 1 S ensor 2)
P0161 O 2 S ensor H eater C ircuit (B ank 2 Sensor 2)
P0142 O 2 S ensor C ircuit (B ank 1 S ensor 3)
P0162 O 2 S ensor C ircuit (B ank 2 S ensor 3)
P0143 O 2 S ensor C ircuit Low Voltage (B ank 1 S ensor 3)
P0163 O 2 S ensor C ircuit Low Voltage (B ank 2 S ensor 3)
P0144 O 2 S ensor C ircuit H igh Voltage (B ank 1 S ensor 3)
P0164 O 2 S ensor C ircuit H igh Voltage (B ank 2 S ensor 3)
P0145 O 2 S ensor C ircuit S low R esponse (B ank 1 S ensor 3)
P0165 O 2 S ensor C ircuit S low R esponse (B ank 2 S ensor 3)
P0146 O 2 S ensor C ircuit N o A ctivity D etected (B ank 1 S ensor 3)
P0166 O 2 S ensor C ircuit N o A ctivity D etected (B ank 2 S ensor 3)
P0147 O 2 S ensor H eater C ircuit (B ank 1 S ensor 3)
P0167 O 2 S ensor H eater C ircuit (B ank 2 Sensor 3)
P0148 Fuel D elivery E rror
P0168 Fuel Tem perature Too H igh
P0149 Fuel Tim ing E rror
P0169 Incorrect Fuel C om position
P0150 O 2 S ensor C ircuit (B ank 2 S ensor 1)
P0170 Fuel Trim (B ank 1)
P0151 O 2 S ensor C ircuit Low Voltage (B ank 2 S ensor 1)
P0171 S ystem Too Lean (B ank 1)
P0152 O 2 S ensor C ircuit H igh Voltage (B ank 2 S ensor 1)
P0172 S ystem Too R ich (B ank 1) P0173 Fuel Trim (B ank 2)
P0153 O 2 S ensor C ircuit S low R esponse (B ank 2 S ensor 1)
P0174 S ystem Too Lean (B ank 2)
P0154 O 2 S ensor C ircuit N o A ctivity D etected (B ank 2 S ensor 1)
P0175 S ystem Too R ich (B ank 2)
P0155 O 2 S ensor H eater C ircuit (B ank 2 S ensor 1) P0156 O 2 S ensor C ircuit (B ank 2 S ensor 2)
DTCs, English
P0176 Fuel C om position S ensor C ircuit P0177 Fuel C om position S ensor C ircuit R ange/P erform ance
&
P0178 Fuel C om position S ensor C ircuit Low
P0200 Injector C ircuit/O pen
P0179 Fuel C om position S ensor C ircuit H igh
P0201 Injector C ircuit/O pen – C ylinder 1
P0180 Fuel Tem perature S ensor A C ircuit
P0202 Injector C ircuit/O pen – C ylinder 2
P0181 Fuel Tem perature S ensor A C ircuit R ange/P erform ance
P0203 Injector C ircuit/O pen – C ylinder 3
P0182 Fuel Tem perature S ensor A C ircuit Low P0183 Fuel Tem perature S ensor A C ircuit H igh P0184 Fuel Tem perature S ensor A C ircuit Interm ittent P0185 Fuel Tem perature S ensor B C ircuit
P0204 Injector C ircuit/O pen – C ylinder 4 P0205 Injector C ircuit/O pen – C ylinder 5 P0206 Injector C ircuit/O pen – C ylinder 6 P0207 Injector C ircuit/O pen – C ylinder 7 P0208 Injector C ircuit/O pen – C ylinder 8
P0186 Fuel Tem perature S ensor B C ircuit R ange/P erform ance
P0209 Injector C ircuit/O pen – C ylinder 9
P0187 Fuel Tem perature S ensor B C ircuit Low
P0210 Injector C ircuit/O pen – C ylinder 10
P0188 Fuel Tem perature S ensor B C ircuit H igh P0189 Fuel Tem perature S ensor B C ircuit Interm ittent P0190 Fuel R ail P ressure S ensor C ircuit P0191 Fuel R ail P ressure S ensor C ircuit R ange/P erform ance
P0211 Injector C ircuit/O pen – C ylinder 11 P0212 Injector C ircuit/O pen – C ylinder 12 P0213 C old S tart Injector 1 P0214 C old S tart Injector 2 P0215 E ngine S hutoff S olenoid
P0192 Fuel R ail P ressure S ensor C ircuit Low
P0216 Injector/Injection Tim ing C ontrol C ircuit
P0193 Fuel R ail P ressure S ensor C ircuit H igh
P0217 E ngine C oolant O ver Tem perature C ondition
P0194 Fuel R ail P ressure S ensor C ircuit Interm ittent
P0218 Transm ission Fluid O ver Tem perature C ondition
P0195 E ngine O il Tem perature Sensor
P0219 E ngine O verspeed C ondition
P0196 E ngine O il Tem perature Sensor R ange/P erform ance
P0220 Throttle/P edal P osition S ensor/S w itch "B " C ircuit
P0197 E ngine O il Tem perature Sensor Low
P0221 Throttle/P edal P osition S ensor/S w itch "B " C ircuit R ange/P erform ance
P0198 E ngine O il Tem perature Sensor H igh P0199 E ngine O il Tem perature Sensor Interm ittent
& &
P0222 Throttle/P edal P osition S ensor/S w itch "B " C ircuit Low
DTCs, English
P0223 Throttle/P edal P osition S ensor/S w itch "B " C ircuit H igh
P0242 Turbo/S uper C harger B oost S ensor "B " C ircuit H igh
P0224 Throttle/P edal P osition S ensor/S w itch "B " C ircuit Interm ittent
P0243 Turbo/S uper C harger W astegate S olenoid "A "
P0225 Throttle/P edal P osition S ensor/S w itch "C " C ircuit
P0244 Turbo/S uper C harger W astegate S olenoid "A " R ange/P erform ance
P0226 Throttle/P edal P osition S ensor/S w itch "C " C ircuit R ange/P erform ance
P0245 Turbo/S uper C harger W astegate S olenoid "A " Low
P0227 Throttle/P edal P osition S ensor/S w itch "C " C ircuit Low
P0246 Turbo/S uper C harger W astegate S olenoid "A " H igh
P0228 Throttle/P edal P osition S ensor/S w itch "C " C ircuit H igh
P0247 Turbo/S uper C harger W astegate S olenoid "B "
P0229 Throttle/P edal P osition S ensor/S w itch "C " C ircuit Interm ittent
P0248 Turbo/S uper C harger W astegate S olenoid "B " R ange/P erform ance
P0230 Fuel P um p P rim ary C ircuit
P0249 Turbo/S uper C harger W astegate S olenoid "B " Low
P0231 Fuel P um p S econdary C ircuit Low P0232 Fuel P um p S econdary C ircuit H igh P0233 Fuel P um p S econdary C ircuit Interm ittent P0234 Turbo/S uper C harger O verboost C ondition P0235 Turbo/S uper C harger B oost S ensor "A" C ircuit P0236 Turbo/S uper C harger B oost S ensor "A" C ircuit R ange/P erform ance P0237 Turbo/S uper C harger B oost S ensor "A" C ircuit Low P0238 Turbo/S uper C harger B oost S ensor "A" C ircuit H igh P0239 Turbo/S uper C harger B oost S ensor "B" C ircuit P0240 Turbo/S uper C harger B oost S ensor "B" C ircuit R ange/P erform ance P0241 Turbo/S uper C harger B oost S ensor "B" C ircuit Low
DTCs, English
P0250 Turbo/S uper C harger W astegate S olenoid "B " H igh P0251 Injection P um p Fuel M etering C ontrol "A " (C am /R otor/Injector) P0252 Injection P um p Fuel M etering C ontrol "A " R ange/P erform ance (C am /R otor/Injector) P0253 Injection P um p Fuel M etering C ontrol "A " Low (C am /R otor/Injector) P0254 Injection P um p Fuel M etering C ontrol "A " H igh (C am /R otor/Injector) P0255 Injection P um p Fuel M etering C ontrol "A " Interm ittent (C am /R otor/Injector) P0256 Injection P um p Fuel M etering C ontrol "B " (C am /R otor/Injector) P0257 Injection P um p Fuel M etering C ontrol "B " R ange/P erform ance (C am /R otor/Injector) P0258 Injection P um p Fuel M etering C ontrol "B " Low (C am /R otor/Injector) P0259 Injection P um p Fuel M etering C ontrol "B " H igh (C am /R otor/Injector)
&
P0260 Injection P um p Fuel M etering C ontrol "B " Interm ittent (C am /R otor/Injector) P0261 C ylinder 1 Injector C ircuit Low P0262 C ylinder 1 Injector C ircuit H igh P0263 C ylinder 1 C ontribution/Balance P0264 C ylinder 2 Injector C ircuit Low P0265 C ylinder 2 Injector C ircuit H igh P0266 C ylinder 2 C ontribution/Balance P0267 C ylinder 3 Injector C ircuit Low P0268 C ylinder 3 Injector C ircuit H igh P0269 C ylinder 3 C ontribution/Balance P0270 C ylinder 4 Injector C ircuit Low P0271 C ylinder 4 Injector C ircuit H igh P0272 C ylinder 4 C ontribution/Balance P0273 C ylinder 5 Injector C ircuit Low P0274 C ylinder 5 Injector C ircuit H igh P0275 C ylinder 5 C ontribution/Balance P0276 C ylinder 6 Injector C ircuit Low P0277 C ylinder 6 Injector C ircuit H igh P0278 C ylinder 6 C ontribution/Balance P0279 C ylinder 7 Injector C ircuit Low P0280 C ylinder 7 Injector C ircuit H igh P0281 C ylinder 7 C ontribution/Balance P0282 C ylinder 8 Injector C ircuit Low P0283 C ylinder 8 Injector C ircuit H igh P0284 C ylinder 8 C ontribution/Balance
& &
P0285 C ylinder 9 Injector C ircuit Low P0286 C ylinder 9 Injector C ircuit H igh P0287 C ylinder 9 C ontribution/B alance P0288 C ylinder 10 Injector C ircuit Low P0289 C ylinder 10 Injector C ircuit H igh P0290 C ylinder 10 C ontribution/B alance P0291 C ylinder 11 Injector C ircuit Low P0292 C ylinder 11 Injector C ircuit H igh P0293 C ylinder 11 C ontribution/B alance P0294 C ylinder 12 Injector C ircuit Low P0295 C ylinder 12 Injector C ircuit H igh P0296 C ylinder 12 C ontribution/B alance P0297 Vehicle O verspeed C ondition P0298 E ngine O il O ver Tem perature P0299 Turbo/S uper C harger U nderboost P0300 R andom /M ultiple C ylinder M isfire D etected P0301 C ylinder 1 M isfire D etected P0302 C ylinder 2 M isfire D etected P0303 C ylinder 3 M isfire D etected P0304 C ylinder 4 M isfire D etected P0305 C ylinder 5 M isfire D etected P0306 C ylinder 6 M isfire D etected P0307 C ylinder 7 M isfire D etected P0308 C ylinder 8 M isfire D etected P0309 C ylinder 9 M isfire D etected
DTCs, English
P0310 C ylinder 10 M isfire D etected
P0330 K nock S ensor 2 C ircuit (Bank 2)
P0311 C ylinder 11 M isfire D etected
P0331 K nock S ensor 2 C ircuit R ange/P erform ance (B ank 2)
P0312 C ylinder 12 M isfire D etected P0313 M isfire D etected w ith Low Fuel P0314 S ingle C ylinder M isfire (C ylinder not S pecified) P0315 C rankshaft P osition S ystem Variation N ot Learned
P0332 K nock S ensor 2 C ircuit Low (B ank 2) P0333 K nock S ensor 2 C ircuit H igh (B ank 2) P0334 K nock S ensor 2 C ircuit Input Interm ittent (B ank 2) P0335 C rankshaft P osition S ensor "A " C ircuit
P0316 E ngine M isfire D etected on S tartup (First 1000 R evolutions)
P0336 C rankshaft P osition S ensor "A " C ircuit R ange/P erform ance
P0317 R ough R oad H ardw are N ot P resent
P0337 C rankshaft P osition S ensor "A " C ircuit Low
P0318 R ough R oad S ensor “A ” Signal C ircuit
P0338 C rankshaft P osition S ensor "A " C ircuit H igh
P0319 R ough R oad S ensor “B ”
P0339 C rankshaft P osition S ensor "A " C ircuit Interm ittent
P0320 Ignition/D istributor E ngine S peed Input C ircuit P0321 Ignition/D istributor E ngine S peed Input C ircuit R ange/P erform ance P0322 Ignition/D istributor E ngine S peed Input C ircuit N o S ignal P0323 Ignition/D istributor E ngine S peed Input C ircuit Interm ittent
P0340 C am shaft P osition S ensor "A " C ircuit (B ank 1 or S ingle S ensor) P0341 C am shaft P osition S ensor "A " C ircuit R ange/P erform ance (B ank 1 or S ingle S ensor) P0342 C am shaft P osition S ensor "A " C ircuit Low (B ank 1 or S ingle S ensor)
P0324 K nock C ontrol System E rror
P0343 C am shaft P osition S ensor "A " C ircuit H igh (B ank 1 or S ingle S ensor)
P0325 K nock S ensor 1 C ircuit (B ank 1 or S ingle S ensor)
P0344 C am shaft P osition S ensor "A " C ircuit Interm ittent (B ank 1 or S ingle S ensor)
P0326 K nock S ensor 1 C ircuit R ange/P erform ance (B ank 1 or S ingle S ensor) P0327 K nock S ensor 1 C ircuit Low (B ank 1 or S ingle S ensor )
P0345 C am shaft P osition S ensor "A " C ircuit (B ank 2) P0346 C am shaft P osition S ensor "A " C ircuit R ange/P erform ance (B ank 2 )
P0328 K nock S ensor 1 C ircuit H igh (B ank 1 or S ingle S ensor)
P0347 C am shaft P osition S ensor "A " C ircuit Low (B ank 2 )
P0329 K nock S ensor 1 C ircuit Input Interm ittent (B ank 1 or S ingle S ensor)
P0348 C am shaft P osition S ensor "A " C ircuit H igh (B ank 2 )
DTCs, English
&
P0349 C am shaft P osition S ensor "A " C ircuit Interm ittent (B ank 2 )
P0371 Tim ing R eference H igh R esolution Signal "A " Too M any P ulses
P0350 Ignition C oil P rim ary/S econdary C ircuit
P0372 Tim ing R eference H igh R esolution Signal "A " Too Few P ulses
P0351 Ignition C oil "A " P rim ary/S econdary C ircuit P0352 Ignition C oil "B " P rim ary/S econdary C ircuit P0353 Ignition C oil "C " P rim ary/S econdary C ircuit P0354 Ignition C oil "D " P rim ary/S econdary C ircuit P0355 Ignition C oil "E " P rim ary/S econdary C ircuit P0356 Ignition C oil "F" P rim ary/S econdary C ircuit
P0373 Tim ing R eference H igh R esolution Signal "A " Interm ittent/E rratic P ulses P0374 Tim ing R eference H igh R esolution Signal "A " N o P ulse P0375 Tim ing R eference H igh R esolution Signal "B " P0376 Tim ing R eference H igh R esolution Signal "B " Too M any P ulses
P0357 Ignition C oil "G " P rim ary/S econdary C ircuit
P0377 Tim ing R eference H igh R esolution Signal "B " Too Few P ulses
P0358 Ignition C oil "H " P rim ary/S econdary C ircuit
P0378 Tim ing R eference H igh R esolution Signal "B " Interm ittent/E rratic P ulses
P0359 Ignition C oil "I" P rim ary/S econdary C ircuit P0360 Ignition C oil "J" P rim ary/S econdary C ircuit P0361 Ignition C oil "K " P rim ary/S econdary C ircuit P0362 Ignition C oil "L" P rim ary/S econdary C ircuit P0363 M isfire D etected – Fueling D isabled P0364 R eserved P0365 C am shaft P osition S ensor "B " C ircuit (B ank 1) P0366 C am shaft P osition S ensor "B " C ircuit R ange/P erform ance (B ank 1 ) P0367 C am shaft P osition S ensor "B " C ircuit Low (B ank 1 ) P0368 C am shaft P osition S ensor "B " C ircuit H igh (B ank 1 ) P0369 C am shaft P osition S ensor "B " C ircuit Interm ittent (B ank 1 ) P0370 Tim ing R eference H igh R esolution S ignal "A "
& &
P0379 Tim ing R eference H igh R esolution Signal "B " N o P ulses P0380 G low P lug/H eater C ircuit "A " P0381 G low P lug/H eater Indicator C ircuit P0382 G low P lug/H eater C ircuit "B " P0385 C rankshaft P osition S ensor "B " C ircuit P0386 C rankshaft P osition S ensor "B " C ircuit R ange/P erform ance P0387 C rankshaft P osition S ensor "B " C ircuit Low P0388 C rankshaft P osition S ensor "B " C ircuit H igh P0389 C rankshaft P osition S ensor "B " C ircuit Interm ittent P0390 C am shaft P osition S ensor "B " C ircuit (B ank 2) P0391 C am shaft P osition S ensor "B " C ircuit R ange/P erform ance (B ank 2) P0392 C am shaft P osition S ensor "B " C ircuit Low (B ank 2)
DTCs, English
P0393 C am shaft P osition S ensor "B " C ircuit H igh (B ank 2)
P0417 S econdary A ir Injection S ystem S w itching Valve "B " C ircuit S horted
P0394 C am shaft P osition S ensor "B " C ircuit Interm ittent (B ank 2)
P0418 S econdary A ir Injection S ystem C ontrol "A " C ircuit
P0400 E xhaust G as R ecirculation Flow
P0419 S econdary A ir Injection S ystem C ontrol "B " C ircuit
P0401 E xhaust G as R ecirculation Flow Insufficient D etected P0402 E xhaust G as R ecirculation Flow E xcessive D etected P0403 E xhaust G as R ecirculation C ontrol C ircuit P0404 E xhaust G as R ecirculation C ontrol C ircuit R ange/P erform ance P0405 E xhaust G as R ecirculation S ensor "A " C ircuit Low P0406 E xhaust G as R ecirculation S ensor "A " C ircuit H igh P0407 E xhaust G as R ecirculation S ensor "B " C ircuit Low P0408 E xhaust G as R ecirculation S ensor "B " C ircuit H igh P0409 E xhaust G as R ecirculation S ensor "A " C ircuit P0410 S econdary A ir Injection S ystem P0411 S econdary A ir Injection S ystem Incorrect Flow D etected P0412 S econdary A ir Injection S ystem S w itching Valve "A " C ircuit P0413 S econdary A ir Injection S ystem S w itching Valve "A " C ircuit O pen P0414 S econdary A ir Injection S ystem S w itching Valve "A " C ircuit S horted P0415 S econdary A ir Injection S ystem S w itching Valve "B " C ircuit P0416 S econdary A ir Injection S ystem S w itching Valve "B " C ircuit O pen
DTCs, English
P0420 C atalyst S ystem E fficiency B elow Threshold (B ank 1) P0421 W arm U p C atalyst E fficiency B elow Threshold (B ank 1) P0422 M ain C atalyst E fficiency B elow Threshold (B ank 1) P0423 H eated C atalyst Efficiency B elow Threshold (B ank 1) P0424 H eated C atalyst Tem perature B elow Threshold (B ank 1) P0425 C atalyst Tem perature S ensor (B ank 1) P0426 C atalyst Tem perature S ensor R ange/P erform ance (B ank 1) P0427 C atalyst Tem perature S ensor Low (B ank 1) P0428 C atalyst Tem perature S ensor H igh (B ank 1) P0429 C atalyst H eater C ontrol C ircuit (B ank 1) P0430 C atalyst S ystem E fficiency B elow Threshold (B ank 2) P0431 W arm U p C atalyst E fficiency B elow Threshold (B ank 2) P0432 M ain C atalyst E fficiency B elow Threshold (B ank 2) P0433 H eated C atalyst Efficiency B elow Threshold (B ank 2) P0434 H eated C atalyst Tem perature B elow Threshold (B ank 2) P0435 C atalyst Tem perature S ensor (B ank 2)
&
P0436 C atalyst Tem perature S ensor R ange/P erform ance (B ank 2)
P0455 E vaporative E m ission S ystem Leak D etected (large leak)
P0437 C atalyst Tem perature S ensor Low (B ank 2)
P0456 E vaporative E m ission S ystem Leak D etected (very sm all leak)
P0438 C atalyst Tem perature S ensor H igh (B ank 2) P0439 C atalyst H eater C ontrol C ircuit (B ank 2) P0440 E vaporative E m ission S ystem P0441 E vaporative E m ission S ystem Incorrect Purge Flow
P0457 E vaporative E m ission S ystem Leak D etected (fuel cap loose/off) P0458 E vaporative E m ission S ystem P urge C ontrol Valve C ircuit Low P0459 E vaporative E m ission S ystem P urge C ontrol Valve C ircuit H igh
P0442 E vaporative E m ission S ystem Leak D etected (sm all leak)
P0460 Fuel Level S ensor "A " C ircuit
P0443 E vaporative E m ission S ystem P urge C ontrol Valve C ircuit
P0461 Fuel Level S ensor "A " C ircuit R ange/P erform ance
P0444 E vaporative E m ission S ystem P urge C ontrol Valve C ircuit O pen P0445 E vaporative E m ission S ystem P urge C ontrol Valve C ircuit S horted P0446 E vaporative E m ission S ystem Vent C ontrol C ircuit P0447 E vaporative E m ission S ystem Vent C ontrol C ircuit O pen P0448 E vaporative E m ission S ystem Vent C ontrol C ircuit S horted P0449 E vaporative E m ission S ystem Vent Valve/S olenoid C ircuit P0450 E vaporative E m ission S ystem P ressure S ensor/S w itch P0451 E vaporative E m ission S ystem P ressure S ensor/S w itch R ange/P erform ance P0452 E vaporative E m ission S ystem P ressure S ensor/S w itch Low P0453 E vaporative E m ission S ystem P ressure S ensor/S w itch H igh P0454 E vaporative E m ission S ystem P ressure S ensor/S w itch Interm ittent
& &
P0462 Fuel Level S ensor "A " C ircuit Low P0463 Fuel Level S ensor "A " C ircuit H igh P0464 Fuel Level S ensor "A " C ircuit Interm ittent P0465 E VA P P urge F low S ensor C ircuit P0466 E VA P P urge F low S ensor C ircuit R ange/P erform ance P0467 E VA P P urge Flow S ensor C ircuit Low P0468 E VA P P urge Flow S ensor C ircuit H igh P0469 E VA P P urge Flow S ensor C ircuit Interm ittent P0470 E xhaust P ressure S ensor P0471 E xhaust P ressure S ensor R ange/P erform ance P0472 E xhaust P ressure S ensor Low P0473 E xhaust P ressure S ensor H igh P0474 E xhaust P ressure S ensor Interm ittent P0475 E xhaust P ressure C ontrol Valve
DTCs, English
P0476 E xhaust P ressure C ontrol Valve R ange/P erform ance
P0498 E vaporative E m ission S ystem Vent Valve C ontrol C ircuit Low
P0477 E xhaust P ressure C ontrol Valve Low
P0499 E vaporative E m ission S ystem Vent Valve C ontrol C ircuit H igh
P0478 E xhaust P ressure C ontrol Valve H igh P0479 E xhaust P ressure C ontrol Valve Interm ittent
P0500 Vehicle Speed S ensor "A "
P0480 Fan 1 C ontrol C ircuit
P0501 Vehicle Speed S ensor "A " R ange/P erform ance
P0481 Fan 2 C ontrol C ircuit
P0502 Vehicle Speed S ensor "A " C ircuit Low Input
P0482 Fan 3 C ontrol C ircuit
P0503 Vehicle Speed S ensor "A " Interm ittent/E rratic/H igh
P0483 Fan R ationality C heck
P0504 B rake S w itch “A ”/”B ” C orrelation
P0484 Fan C ircuit O ver C urrent P0485 Fan P ow er/G round C ircuit P0486 E xhaust G as R ecirculation S ensor "B " C ircuit P0487 E xhaust G as R ecirculation Throttle P osition C ontrol C ircuit P0488 E xhaust G as R ecirculation Throttle P osition C ontrol R ange/Perform ance P0489 E xhaust G as R ecirculation C ontrol C ircuit Low P0490 E xhaust G as R ecirculation C ontrol C ircuit H igh
P0505 Idle A ir C ontrol System P0506 Idle A ir C ontrol System R P M Low er Than E xpected P0507 Idle A ir C ontrol System R P M H igher Than E xpected P0508 Idle A ir C ontrol System C ircuit Low P0509 Idle A ir C ontrol System C ircuit H igh P0510 C losed Throttle Position S w itch P0511 Idle A ir C ontrol C ircuit P0512 S tarter R equest C ircuit
P0491 S econdary A ir Injection S ystem (Bank 1)
P0513 Incorrect Im m obilizer K ey
P0492 S econdary A ir Injection S ystem (Bank 2)
P0514 B attery Tem perature S ensor C ircuit R ange/P erform ance
P0493 Fan O verspeed P0494 Fan S peed Low P0495 Fan S peed H igh P0496 E vaporative E m ission S ystem H igh P urge Flow P0497 E vaporative E m ission S ystem Low P urge Flow
DTCs, English
P0515 B attery Tem perature S ensor C ircuit P0516 B attery Tem perature S ensor C ircuit Low P0517 B attery Tem perature S ensor C ircuit H igh P0518 Idle A ir C ontrol C ircuit Interm ittent P0519 Idle A ir C ontrol System P erform ance
&
P0520 E ngine O il P ressure S ensor/S w itch C ircuit
P0540 Intake A ir H eater “A ” C ircuit
P0521 E ngine O il P ressure S ensor/S w itch R ange/P erform ance
P0541 Intake A ir H eater “A ” C ircuit Low
P0522 E ngine O il P ressure S ensor/S w itch Low Voltage P0523 E ngine O il P ressure S ensor/S w itch H igh Voltage P0524 E ngine O il P ressure Too Low P0525 C ruise C ontrol S ervo C ontrol C ircuit R ange/P erform ance P0526 Fan S peed S ensor C ircuit P0527 Fan S peed S ensor C ircuit R ange/P erform ance P0528 Fan S peed S ensor C ircuit N o S ignal P0529 Fan S peed S ensor C ircuit Interm ittent P0530 A /C R efrigerant P ressure S ensor “A ” C ircuit P0531 A /C R efrigerant P ressure S ensor “A ” C ircuit R ange/P erform ance P0532 A /C R efrigerant P ressure S ensor “A ” C ircuit Low P0533 A /C R efrigerant P ressure S ensor “A ” C ircuit H igh P0534 A ir C onditioner R efrigerant C harge Loss
P0542 Intake A ir H eater “A ” C ircuit H igh P0543 Intake A ir H eater “A ” C ircuit O pen P0544 E xhaust G as Tem perature S ensor C ircuit (B ank 1 S ensor 1) P0545 E xhaust G as Tem perature S ensor C ircuit Low (B ank 1 S ensor 1) P0546 E xhaust G as Tem perature S ensor C ircuit H igh (Bank 1 S ensor 1) P0547 E xhaust G as Tem perature S ensor C ircuit (B ank 2 S ensor 1) P0548 E xhaust G as Tem perature S ensor C ircuit Low (B ank 2 S ensor 1) P0549 E xhaust G as Tem perature S ensor C ircuit H igh (Bank 2 S ensor 1) P0550 P ow er S teering P ressure S ensor/S w itch C ircuit P0551 P ow er S teering P ressure S ensor/S w itch C ircuit R ange/P erform ance P0552 P ow er S teering P ressure S ensor/S w itch C ircuit Low Input P0553 P ow er S teering P ressure S ensor/S w itch C ircuit H igh Input
P0535 A /C E vaporator Tem perature S ensor C ircuit
P0554 P ow er S teering P ressure S ensor/S w itch C ircuit Interm ittent
P0536 A /C E vaporator Tem perature S ensor C ircuit R ange/P erform ance
P0555 B rake B ooster P ressure S ensor C ircuit
P0537 A /C E vaporator Tem perature S ensor C ircuit Low
P0556 B rake B ooster P ressure S ensor C ircuit R ange/P erform ance
P0538 A /C E vaporator Tem perature S ensor C ircuit H igh
P0557 B rake B ooster P ressure S ensor C ircuit Low Input
P0539 A /C E vaporator Tem perature S ensor C ircuit Interm ittent
P0558 B rake B ooster P ressure S ensor C ircuit H igh Input
& &
DTCs, English
P0559 B rake B ooster P ressure S ensor C ircuit Interm ittent
P0581 C ruise C ontrol M ulti-Function Input “A ” C ircuit H igh
P0560 S ystem Voltage
P0582 C ruise C ontrol Vacuum C ontrol C ircuit/O pen
P0561 S ystem Voltage U nstable
P0583 C ruise C ontrol Vacuum C ontrol C ircuit Low
P0562 S ystem Voltage Low
P0584 C ruise C ontrol Vacuum C ontrol C ircuit H igh
P0563 S ystem Voltage H igh
P0585 C ruise C ontrol M ulti-Function Input “A ”/”B ” C orrelation
P0564 C ruise C ontrol M ulti-Function Input "A " C ircuit
P0586 C ruise C ontrol Vent C ontrol C ircuit/O pen
P0565 C ruise C ontrol O n S ignal
P0587 C ruise C ontrol Vent C ontrol C ircuit Low
P0566 C ruise C ontrol O ff S ignal
P0588 C ruise C ontrol Vent C ontrol C ircuit H igh
P0567 C ruise C ontrol R esum e S ignal
P0589 C ruise C ontrol M ulti-Function Input “B ” C ircuit
P0568 C ruise C ontrol S et S ignal P0569 C ruise C ontrol C oast S ignal
P0590 C ruise C ontrol M ulti-Function Input “B ” C ircuit S tuck
P0570 C ruise C ontrol A ccelerate S ignal
P0591 C ruise C ontrol M ulti-Function Input “B ” C ircuit R ange/P erform ance
P0571 B rake S w itch "A " C ircuit
P0592 C ruise C ontrol M ulti-Function Input “B ” C ircuit Low
P0572 B rake S w itch "A " C ircuit Low P0573 B rake S w itch "A " C ircuit H igh P0574 C ruise C ontrol S ystem - Vehicle S peed Too H igh P0575 C ruise C ontrol Input C ircuit P0576 C ruise C ontrol Input C ircuit Low P0577 C ruise C ontrol Input C ircuit H igh P0578 C ruise C ontrol M ulti-Function Input “A ” C ircuit S tuck P0579 C ruise C ontrol M ulti-Function Input “A ” C ircuit R ange/P erform ance P0580 C ruise C ontrol M ulti-Function Input “A ” C ircuit Low
P0593 C ruise C ontrol M ulti-Function Input “B ” C ircuit H igh P0594 C ruise C ontrol S ervo C ontrol C ircuit/O pen P0595 C ruise C ontrol S ervo C ontrol C ircuit Low P0596 C ruise C ontrol S ervo C ontrol C ircuit H igh P0597 Therm ostat H eater C ontrol C ircuit/O pen P0598 Therm ostat H eater C ontrol C ircuit Low P0599 Therm ostat H eater C ontrol C ircuit H igh P0600 S erial C om m unication Link P0601 Internal C ontrol M odule M em ory C heck S um E rror P0602 C ontrol M odule Program m ing E rror
DTCs, English
&
P0603 Internal C ontrol M odule K eep A live M em ory (K A M ) E rror P0604 Internal C ontrol M odule R andom A ccess M em ory (R A M ) E rror
P0626 G enerator Field/F Term inal C ircuit H igh P0627 Fuel P um p “A ” C ontrol C ircuit /O pen P0628 Fuel P um p “A ” C ontrol C ircuit Low
P0605 Internal C ontrol M odule R ead O nly M em ory (R O M ) E rror
P0629 Fuel P um p “A ” C ontrol C ircuit H igh
P0606 E C M /P C M P rocessor
P0630 V IN N ot P rogram m ed or Incom patible – E C M /PC M
P0607 C ontrol M odule P erform ance
P0631 V IN N ot P rogram m ed or Incom patible – TC M
P0608 C ontrol M odule V S S O utput "A " P0609 C ontrol M odule V S S O utput "B " P0610 C ontrol M odule Vehicle O ptions E rror
P0632 O dom eter N ot P rogram m ed – E C M /P C M P0633 Im m obilizer K ey N ot P rogram m ed – E C M /PC M
P0611 Fuel Injector C ontrol M odule P erform ance
P0634 P C M /EC M /TC M Internal Tem perature Too H igh
P0612 Fuel Injector C ontrol M odule R elay C ontrol
P0635 P ow er S teering C ontrol C ircuit
P0613 TC M P rocessor
P0636 P ow er S teering C ontrol C ircuit Low
P0614 E C M / TC M Incom patible
P0637 P ow er S teering C ontrol C ircuit H igh
P0615 S tarter R elay C ircuit
P0638 Throttle A ctuator C ontrol R ange/P erform ance (B ank 1)
P0616 S tarter R elay C ircuit Low P0617 S tarter R elay C ircuit H igh
P0639 Throttle A ctuator C ontrol R ange/P erform ance (B ank 2)
P0618 A lternative F uel C ontrol M odule K A M E rror
P0640 Intake A ir H eater C ontrol C ircuit
P0619 A lternative Fuel C ontrol M odule R A M /R O M E rror P0620 G enerator C ontrol C ircuit P0621 G enerator Lam p/L Term inal C ircuit P0622 G enerator Field/F Term inal C ircuit P0623 G enerator Lam p C ontrol C ircuit P0624 Fuel C ap Lam p C ontrol C ircuit P0625 G enerator Field/F Term inal C ircuit Low
& &
P0641 S ensor R eference Voltage “A” C ircuit/O pen P0642 S ensor R eference Voltage “A” C ircuit Low P0643 S ensor R eference Voltage “A” C ircuit H igh P0644 D river D isplay S erial C om m unication C ircuit P0645 A /C C lutch R elay C ontrol C ircuit P0646 A /C C lutch R elay C ontrol C ircuit Low P0647 A /C C lutch R elay C ontrol C ircuit H igh P0648 Im m obilizer Lam p C ontrol C ircuit
DTCs, English
P0649 S peed C ontrol Lam p C ontrol C ircuit
P0670 G low P lug M odule C ontrol C ircuit
P0650 M alfunction Indicator Lam p (M IL) C ontrol C ircuit
P0671 C ylinder 1 G low P lug C ircuit
P0651 S ensor R eference Voltage “B ” C ircuit/O pen P0652 S ensor R eference Voltage “B ” C ircuit Low P0653 S ensor R eference Voltage “B ” C ircuit H igh P0654 E ngine R P M O utput C ircuit P0655 E ngine H ot Lam p O utput C ontrol C ircuit P0656 Fuel Level O utput C ircuit P0657 A ctuator S upply Voltage C ircuit/O pen P0658 A ctuator S upply Voltage C ircuit Low P0659 A ctuator S upply Voltage C ircuit H igh P0660 Intake M anifold Tuning Valve C ontrol C ircuit/O pen (B ank 1) P0661 Intake M anifold Tuning Valve C ontrol C ircuit Low (B ank 1) P0662 Intake M anifold Tuning Valve C ontrol C ircuit H igh (B ank 1) P0663 Intake M anifold Tuning Valve C ontrol C ircuit/O pen (B ank 2)
P0672 C ylinder 2 G low P lug C ircuit P0673 C ylinder 3 G low P lug C ircuit P0674 C ylinder 4 G low P lug C ircuit P0675 C ylinder 5 G low P lug C ircuit P0676 C ylinder 6 G low P lug C ircuit P0677 C ylinder 7 G low P lug C ircuit P0678 C ylinder 8 G low P lug C ircuit P0683 G low P lug C ontrol M odule to P C M C om m unication C ircuit P0684 G low P lug C ontrol M odule to P C M C om m unication C ircuit R ange/P erform ance P0685 E C M /PC M P ow er R elay C ontrol C ircuit /O pen P0686 E C M /PC M P ow er R elay C ontrol C ircuit Low P0687 E C M /PC M P ow er R elay C ontrol C ircuit H igh P0688 E C M /PC M P ow er R elay S ense C ircuit /O pen P0689 E C M /PC M P ow er R elay S ense C ircuit Low
P0664 Intake M anifold Tuning Valve C ontrol C ircuit Low (B ank 2)
P0690 E C M /PC M P ow er R elay S ense C ircuit H igh
P0665 Intake M anifold Tuning Valve C ontrol C ircuit H igh (B ank 2)
P0691 Fan 1 C ontrol C ircuit Low
P0666 P C M /E C M /TC M Internal Tem perature S ensor C ircuit P0667 P C M /E C M /TC M Internal Tem perature S ensor R ange/P erform ance P0668 P C M /E C M /TC M Internal Tem perature S ensor C ircuit Low P0669 P C M /E C M /TC M Internal Tem perature S ensor C ircuit H igh
DTCs, English
P0692 Fan 1 C ontrol C ircuit H igh P0693 Fan 2 C ontrol C ircuit Low P0694 Fan 2 C ontrol C ircuit H igh P0695 Fan 3 C ontrol C ircuit Low P0696 Fan 3 C ontrol C ircuit H igh P0697 S ensor R eference Voltage “C ” C ircuit/O pen
&
P0698 S ensor R eference Voltage “C ” C ircuit Low P0699 S ensor R eference Voltage “C ” C ircuit H igh P0700 Transm ission C ontrol S ystem (M IL R equest) P0701 Transm ission C ontrol S ystem R ange/P erform ance P0702 Transm ission C ontrol S ystem E lectrical P0703 B rake S w itch "B " C ircuit P0704 C lutch S w itch Input C ircuit M alfunction P0705 Transm ission R ange S ensor C ircuit M alfunction (P R N D L Input)
P0718 Input/Turbine S peed S ensor "A " C ircuit Interm ittent P0719 B rake S w itch "B " C ircuit Low P0720 O utput S peed S ensor C ircuit P0721 O utput S peed S ensor C ircuit R ange/P erform ance P0722 O utput S peed S ensor C ircuit N o S ignal P0723 O utput S peed S ensor C ircuit Interm ittent P0724 B rake S w itch "B " C ircuit H igh P0725 E ngine S peed Input C ircuit
P0706 Transm ission R ange S ensor C ircuit R ange/P erform ance
P0726 E ngine S peed Input C ircuit R ange/P erform ance
P0707 Transm ission R ange S ensor C ircuit Low
P0727 E ngine S peed Input C ircuit N o S ignal
P0708 Transm ission R ange S ensor C ircuit H igh
P0728 E ngine S peed Input C ircuit Interm ittent
P0709 Transm ission R ange S ensor C ircuit Interm ittent
P0729 G ear 6 Incorrect R atio
P0710 Transm ission Fluid Tem perature Sensor “A ” C ircuit P0711 Transm ission Fluid Tem perature Sensor “A ” C ircuit R ange/P erform ance P0712 Transm ission Fluid Tem perature Sensor “A ” C ircuit Low P0713 Transm ission Fluid Tem perature Sensor “A ” C ircuit H igh P0714 Transm ission Fluid Tem perature Sensor “A ” C ircuit Interm ittent P0715 Input/Turbine S peed S ensor "A" C ircuit P0716 Input/Turbine S peed S ensor "A" C ircuit R ange/P erform ance P0717 Input/Turbine S peed S ensor "A" C ircuit N o S ignal
& &
P0730 Incorrect G ear R atio P0731 G ear 1 Incorrect R atio P0732 G ear 2 Incorrect R atio P0733 G ear 3 Incorrect R atio P0734 G ear 4 Incorrect R atio P0735 G ear 5 Incorrect R atio P0736 R everse Incorrect R atio P0737 TC M E ngine S peed O utput C ircuit P0738 TC M E ngine S peed O utput C ircuit Low P0739 TC M E ngine S peed O utput C ircuit H igh P0740 Torque C onverter C lutch C ircuit/O pen
DTCs, English
P0741 Torque C onverter C lutch C ircuit P erform ance or S tuck O ff P0742 Torque C onverter C lutch C ircuit S tuck O n P0743 Torque C onverter C lutch C ircuit E lectrical P0744 Torque C onverter C lutch C ircuit Interm ittent P0745 P ressure C ontrol S olenoid "A " P0746 P ressure C ontrol S olenoid "A " Perform ance or S tuck O ff P0747 P ressure C ontrol S olenoid "A " Stuck O n P0748 P ressure C ontrol S olenoid "A " Electrical P0749 P ressure C ontrol S olenoid "A " Interm ittent P0750 S hift S olenoid "A " P0751 S hift S olenoid "A " P erform ance or S tuck O ff P0752 S hift S olenoid "A " S tuck O n P0753 S hift S olenoid "A " E lectrical P0754 S hift S olenoid "A " Interm ittent P0755 S hift S olenoid "B " P0756 S hift S olenoid "B " P erform ance or S tuck O ff P0757 S hift S olenoid "B " S tuck O n P0758 S hift S olenoid "B " E lectrical P0759 S hift S olenoid "B " Interm ittent P0760 S hift S olenoid "C " P0761 S hift S olenoid "C " P erform ance or S tuck O ff P0762 S hift S olenoid "C " S tuck O n P0763 S hift S olenoid "C " E lectrical P0764 S hift S olenoid "C " Interm ittent
DTCs, English
P0765 S hift S olenoid "D " P0766 S hift S olenoid "D " P erform ance or S tuck O ff P0767 S hift S olenoid "D " S tuck O n P0768 S hift S olenoid "D " E lectrical P0769 S hift S olenoid "D " Interm ittent P0770 S hift S olenoid "E " P0771 S hift S olenoid "E " P erform ance or S tuck O ff P0772 S hift S olenoid "E " S tuck O n P0773 S hift S olenoid "E " E lectrical P0774 S hift S olenoid "E " Interm ittent P0775 P ressure C ontrol S olenoid "B " P0776 P ressure C ontrol S olenoid "B " P erform ance or S tuck off P0777 P ressure C ontrol S olenoid "B " S tuck O n P0778 P ressure C ontrol S olenoid "B " E lectrical P0779 P ressure C ontrol S olenoid "B " Interm ittent P0780 S hift E rror P0781 1-2 S hift P0782 2-3 S hift P0783 3-4 S hift P0784 4-5 S hift P0785 S hift/Tim ing S olenoid P0786 S hift/Tim ing S olenoid R ange/P erform ance P0787 S hift/Tim ing S olenoid Low P0788 S hift/Tim ing S olenoid H igh P0789 S hift/Tim ing S olenoid Interm ittent
&
P0790 N orm al/P erform ance S w itch C ircuit
P0812 R everse Input C ircuit
P0791 Interm ediate S haft S peed S ensor “A ” C ircuit
P0813 R everse O utput C ircuit
P0792 Interm ediate S haft S peed S ensor “A ” C ircuit R ange/P erform ance
P0814 Transm ission R ange D isplay C ircuit
P0793 Interm ediate S haft S peed S ensor “A ” C ircuit N o S ignal P0794 Interm ediate S haft S peed S ensor “A ” C ircuit Interm ittent P0795 P ressure C ontrol S olenoid "C " P0796 P ressure C ontrol S olenoid "C " P erform ance or S tuck off P0797 P ressure C ontrol S olenoid "C " S tuck O n P0798 P ressure C ontrol S olenoid "C " E lectrical P0799 P ressure C ontrol S olenoid "C " Interm ittent P0800 Transfer C ase C ontrol S ystem (M IL R equest) P0801 R everse Inhibit C ontrol C ircuit P0802 Transm ission C ontrol S ystem M IL R equest C ircuit/O pen P0803 1-4 U pshift (S kip S hift) Solenoid C ontrol C ircuit
P0815 U pshift S w itch C ircuit P0816 D ow nshift S w itch C ircuit P0817 S tarter D isable C ircuit P0818 D riveline D isconnect S w itch Input C ircuit P0819 U p and D ow n S hift S w itch to Transm ission R ange C orrelation P0820 G ear Lever X -Y Position S ensor C ircuit P0821 G ear Lever X P osition C ircuit P0822 G ear Lever Y P osition C ircuit P0823 G ear Lever X P osition C ircuit Interm ittent P0824 G ear Lever Y P osition C ircuit Interm ittent P0825 G ear Lever P ush-P ull S w itch (S hift A nticipate) P0826 U p and D ow n S hift S w itch C ircuit P0827 U p and D ow n S hift S w itch C ircuit Low
P0804 1-4 U pshift (S kip S hift) Lam p C ontrol C ircuit
P0828 U p and D ow n S hift S w itch C ircuit H igh
P0805 C lutch P osition S ensor C ircuit
P0829 5-6 S hift
P0806 C lutch P osition S ensor C ircuit R ange/P erform ance
P0830 C lutch P edal S w itch "A " C ircuit
P0807 C lutch P osition S ensor C ircuit Low P0808 C lutch P osition S ensor C ircuit H igh P0809 C lutch P osition S ensor C ircuit Interm ittent P0810 C lutch P osition C ontrol Error P0811 E xcessive C lutch S lippage
& &
P0831 C lutch P edal S w itch "A " C ircuit Low P0832 C lutch P edal S w itch "A " C ircuit H igh P0833 C lutch P edal S w itch "B " C ircuit P0834 C lutch P edal S w itch "B " C ircuit Low P0835 C lutch P edal S w itch "B " C ircuit H igh
DTCs, English
P0836 Four W heel D rive (4W D ) S w itch C ircuit P0837 Four W heel D rive (4W D ) S w itch C ircuit R ange/P erform ance
P0857 Traction C ontrol Input S ignal R ange/P erform ance P0858 Traction C ontrol Input S ignal Low
P0838 Four W heel D rive (4W D ) S w itch C ircuit Low
P0859 Traction C ontrol Input S ignal H igh
P0839 Four W heel D rive (4W D ) S w itch C ircuit H igh
P0860 G ear S hift M odule C om m unication C ircuit
P0840 Transm ission Fluid P ressure S ensor/S w itch "A " C ircuit
P0861 G ear S hift M odule C om m unication C ircuit Low
P0841 Transm ission Fluid P ressure S ensor/S w itch "A " C ircuit R ange/P erform ance
P0862 G ear S hift M odule C om m unication C ircuit H igh
P0842 Transm ission Fluid P ressure S ensor/S w itch "A " C ircuit Low
P0863 TC M C om m unication C ircuit
P0843 Transm ission Fluid P ressure S ensor/S w itch "A " C ircuit H igh P0844 Transm ission Fluid P ressure S ensor/S w itch "A " C ircuit Interm ittent P0845 Transm ission Fluid P ressure S ensor/S w itch "B " C ircuit P0846 Transm ission Fluid P ressure S ensor/S w itch "B " C ircuit R ange/P erform ance P0847 Transm ission Fluid P ressure S ensor/S w itch "B " C ircuit Low P0848 Transm ission Fluid P ressure S ensor/S w itch "B " C ircuit H igh P0849 Transm ission Fluid P ressure S ensor/S w itch "B " C ircuit Interm ittent P0850 P ark/N eutral S w itch Input C ircuit
P0864 TC M C om m unication C ircuit R ange/P erform ance P0865 TC M C om m unication C ircuit Low P0866 TC M C om m unication C ircuit H igh P0867 Transm ission Fluid P ressure P0868 Transm ission Fluid P ressure Low P0869 Transm ission Fluid P ressure H igh P0870 Transm ission Fluid P ressure S ensor/S w itch “C ” C ircuit P0871 Transm ission Fluid P ressure S ensor/S w itch “C ” C ircuit R ange/P erform ance P0872 Transm ission Fluid P ressure S ensor/S w itch “C ” C ircuit Low
P0851 P ark/N eutral S w itch Input C ircuit Low
P0873 Transm ission Fluid P ressure S ensor/S w itch “C ” C ircuit H igh
P0852 P ark/N eutral S w itch Input C ircuit H igh
P0874 Transm ission Fluid P ressure S ensor/S w itch “C ” C ircuit Interm ittent
P0853 D rive S w itch Input C ircuit P0854 D rive S w itch Input C ircuit Low P0855 D rive S w itch Input C ircuit H igh
P0875 Transm ission Fluid P ressure S ensor/S w itch “D ” C ircuit P0876 Transm ission Fluid P ressure S ensor/S w itch “D ” C ircuit R ange/P erform ance
P0856 Traction C ontrol Input S ignal
DTCs, English
&
P0877 Transm ission Fluid P ressure S ensor/S w itch “D ” C ircuit Low
P0899 Transm ission C ontrol S ystem M IL R equest C ircuit H igh
P0878 Transm ission Fluid P ressure S ensor/S w itch “D ” C ircuit H igh
P0900 C lutch A ctuator C ircuit/O pen
P0879 Transm ission Fluid P ressure S ensor/S w itch “D ” C ircuit Interm ittent P0880 TC M P ow er Input S ignal
P0901 C lutch A ctuator C ircuit R ange/P erform ance P0902 C lutch A ctuator C ircuit Low P0903 C lutch A ctuator C ircuit H igh
P0881 TC M P ow er Input S ignal R ange/P erform ance
P0904 G ate S elect P osition C ircuit
P0882 TC M P ow er Input S ignal Low
P0905 G ate S elect P osition C ircuit R ange/P erform ance
P0883 TC M P ow er Input S ignal H igh
P0906 G ate S elect P osition C ircuit Low
P0884 TC M P ow er Input S ignal Interm ittent
P0907 G ate S elect P osition C ircuit H igh
P0885 TC M P ow er R elay C ontrol C ircuit/O pen
P0908 G ate S elect P osition C ircuit Interm ittent
P0886 TC M P ow er R elay C ontrol C ircuit Low
P0909 G ate S elect C ontrol E rror
P0887 TC M P ow er R elay C ontrol C ircuit H igh P0888 TC M P ow er R elay S ense C ircuit P0889 TC M P ow er R elay S ense C ircuit R ange/P erform ance P0890 TC M P ow er R elay S ense C ircuit Low P0891 TC M P ow er R elay S ense C ircuit H igh P0892 TC M P ow er R elay S ense C ircuit Interm ittent P0893 M ultiple G ears E ngaged P0894 Transm ission C om ponent S lipping P0895 S hift Tim e Too S hort P0896 S hift Tim e Too Long P0897 Transm ission Fluid D eteriorated P0898 Transm ission C ontrol S ystem M IL R equest C ircuit Low
& &
P0910 G ate S elect A ctuator C ircuit/O pen P0911 G ate S elect A ctuator C ircuit R ange/P erform ance P0912 G ate S elect A ctuator C ircuit Low P0913 G ate S elect A ctuator C ircuit H igh P0914 G ear S hift P osition C ircuit P0915 G ear S hift P osition C ircuit R ange/P erform ance P0916 G ear S hift P osition C ircuit Low P0917 G ear S hift P osition C ircuit H igh P0918 G ear S hift P osition C ircuit Interm ittent P0919 G ear S hift P osition C ontrol E rror P0920 G ear S hift Forw ard A ctuator C ircuit/O pen P0921 G ear S hift Forw ard A ctuator C ircuit R ange/P erform ance
DTCs, English
P0922 G ear S hift Forw ard A ctuator C ircuit Low P0923 G ear S hift Forw ard A ctuator C ircuit H igh P0924 G ear S hift R everse A ctuator C ircuit/O pen P0925 G ear S hift R everse A ctuator C ircuit R ange/P erform ance P0926 G ear S hift R everse A ctuator C ircuit Low P0927 G ear S hift R everse A ctuator C ircuit H igh P0928 G ear S hift Lock S olenoid C ontrol C ircuit/O pen P0929 G ear S hift Lock S olenoid C ontrol C ircuit R ange/P erform ance P0930 G ear S hift Lock S olenoid C ontrol C ircuit Low P0931 G ear S hift Lock S olenoid C ontrol C ircuit H igh
P0943 H ydraulic P ressure U nit C ycling P eriod Too S hort P0944 H ydraulic P ressure U nit Loss of P ressure P0945 H ydraulic P um p R elay C ircuit/O pen P0946 H ydraulic P um p R elay C ircuit R ange/P erform ance P0947 H ydraulic P um p R elay C ircuit Low P0948 H ydraulic P um p R elay C ircuit H igh P0949 A uto S hift M anual A daptive Learning N ot C om plete P0950 A uto S hift M anual C ontrol C ircuit P0951 A uto S hift M anual C ontrol C ircuit R ange/P erform ance P0952 A uto S hift M anual C ontrol C ircuit Low
P0932 H ydraulic P ressure S ensor C ircuit
P0953 A uto S hift M anual C ontrol C ircuit H igh
P0933 H ydraulic P ressure S ensor R ange/P erform ance
P0954 A uto S hift M anual C ontrol C ircuit Interm ittent
P0934 H ydraulic P ressure S ensor C ircuit Low P0935 H ydraulic P ressure S ensor C ircuit H igh P0936 H ydraulic P ressure S ensor C ircuit Interm ittent P0937 H ydraulic O il Tem perature S ensor C ircuit P0938 H ydraulic O il Tem perature S ensor R ange/P erform ance P0939 H ydraulic O il Tem perature S ensor C ircuit Low P0940 H ydraulic O il Tem perature S ensor C ircuit H igh P0941 H ydraulic O il Tem perature S ensor C ircuit Interm ittent P0942 H ydraulic P ressure U nit
DTCs, English
P0955 A uto S hift M anual M ode C ircuit P0956 A uto S hift M anual M ode C ircuit R ange/P erform ance P0957 A uto S hift M anual M ode C ircuit Low P0958 A uto S hift M anual M ode C ircuit H igh P0959 A uto S hift M anual M ode C ircuit Interm ittent P0960 P ressure C ontrol S olenoid "A " C ontrol C ircuit/O pen P0961 P ressure C ontrol S olenoid "A " C ontrol C ircuit R ange/P erform ance P0962 P ressure C ontrol S olenoid "A " C ontrol C ircuit Low P0963 P ressure C ontrol S olenoid "A " C ontrol C ircuit H igh
&
P0964 P ressure C ontrol S olenoid "B " C ontrol C ircuit/O pen
P0984 S hift S olenoid "E " C ontrol C ircuit R ange/P erform ance
P0965 P ressure C ontrol S olenoid "B " C ontrol C ircuit R ange/P erform ance
P0985 S hift S olenoid "E " C ontrol C ircuit Low
P0966 P ressure C ontrol S olenoid "B " C ontrol C ircuit Low P0967 P ressure C ontrol S olenoid "B " C ontrol C ircuit H igh P0968 P ressure C ontrol S olenoid "C " C ontrol C ircuit/O pen P0969 P ressure C ontrol S olenoid "C " C ontrol C ircuit R ange/P erform ance P0970 P ressure C ontrol S olenoid "C " C ontrol C ircuit Low P0971 P ressure C ontrol S olenoid "C " C ontrol C ircuit H igh P0972 S hift S olenoid "A " C ontrol C ircuit R ange/P erform ance P0973 S hift S olenoid "A " C ontrol C ircuit Low
P0986 S hift S olenoid "E " C ontrol C ircuit H igh P0987 Transm ission Fluid P ressure S ensor/S w itch "E " C ircuit P0988 Transm ission Fluid P ressure S ensor/S w itch "E " C ircuit R ange/P erform ance P0989 Transm ission Fluid P ressure S ensor/S w itch "E " C ircuit Low P0990 Transm ission Fluid P ressure S ensor/S w itch "E " C ircuit H igh P0991 Transm ission Fluid P ressure S ensor/S w itch "E " C ircuit Interm ittent P0992 Transm ission Fluid P ressure S ensor/S w itch "F" C ircuit P0993 Transm ission Fluid P ressure S ensor/S w itch "F" C ircuit R ange/P erform ance
P0974 S hift S olenoid "A " C ontrol C ircuit H igh
P0994 Transm ission Fluid P ressure S ensor/S w itch "F" C ircuit Low
P0975 S hift S olenoid "B " C ontrol C ircuit R ange/P erform ance
P0995 Transm ission Fluid P ressure S ensor/S w itch "F" C ircuit H igh
P0976 S hift S olenoid "B " C ontrol C ircuit Low
P0996 Transm ission Fluid P ressure S ensor/S w itch "F" C ircuit Interm ittent
P0977 S hift S olenoid "B " C ontrol C ircuit H igh P0978 S hift S olenoid "C " C ontrol C ircuit R ange/P erform ance P0979 S hift S olenoid "C " C ontrol C ircuit Low
P0997 S hift S olenoid "F" C ontrol C ircuit R ange/P erform ance P0998 S hift S olenoid "F" C ontrol C ircuit Low
P0980 S hift S olenoid "C " C ontrol C ircuit H igh
P0A00 M otor Electronics C oolant Tem perature S ensor C ircuit
P0981 S hift S olenoid "D " C ontrol C ircuit R ange/P erform ance
P0A01 M otor Electronics C oolant Tem perature S ensor C ircuit R ange/P erform ance
P0982 S hift S olenoid "D " C ontrol C ircuit Low
P0A02 M otor Electronics C oolant Tem perature S ensor C ircuit Low
P0983 S hift S olenoid "D " C ontrol C ircuit H igh
& &
P0A03 M otor Electronics C oolant Tem perature S ensor C ircuit H igh
DTCs, English
P0A04 M otor E lectronics C oolant Tem perature S ensor C ircuit Interm ittent P0A05 M otor E lectronics C oolant P um p C ontrol C ircuit/O pen P0A06 M otor E lectronics C oolant P um p C ontrol C ircuit Low P0A07 M otor E lectronics C oolant P um p C ontrol C ircuit H igh P0A08 D C /D C C onverter S tatus C ircuit P0A09 D C /D C C onverter S tatus C ircuit Low Input P0A10 D C /D C C onverter S tatus C ircuit H igh Input P0A11 D C /D C C onverter E nable C ircuit/O pen P0A12 D C /D C C onverter E nable C ircuit Low P0A13 D C /D C C onverter E nable C ircuit H igh P0A14 E ngine M ount C ontrol C ircuit/O pen P0A15 E ngine M ount C ontrol C ircuit Low P0A16 E ngine M ount C ontrol C ircuit H igh
P0A27 B attery P ow er O ff C ircuit P0A28 B attery P ow er O ff C ircuit Low P0A29 B attery P ow er O ff C ircuit H igh P2000 N O x Trap E fficiency B elow Threshold (B ank 1) P2001 N O x Trap E fficiency B elow Threshold (B ank 2) P2002 P articulate Trap E fficiency B elow Threshold (B ank 1) P2003 P articulate Trap E fficiency B elow Threshold (B ank 2) P2004 Intake M anifold R unner C ontrol S tuck O pen (B ank 1) P2005 Intake M anifold R unner C ontrol S tuck O pen (B ank 2) P2006 Intake M anifold R unner C ontrol S tuck C losed (B ank 1) P2007 Intake M anifold R unner C ontrol S tuck C losed (B ank 2)
P0A17 M otor Torque S ensor C ircuit
P2008 Intake M anifold R unner C ontrol C ircuit/O pen (B ank 1)
P0A18 M otor Torque S ensor C ircuit R ange/P erform ance
P2009 Intake M anifold R unner C ontrol C ircuit Low (B ank 1)
P0A19 M otor Torque S ensor C ircuit Low
P2010 Intake M anifold R unner C ontrol C ircuit H igh (B ank 1)
P0A20 M otor Torque S ensor C ircuit H igh P0A21 M otor Torque S ensor C ircuit Interm ittent P0A22 G enerator Torque S ensor C ircuit P0A23 G enerator Torque S ensor C ircuit R ange/P erform ance P0A24 G enerator Torque S ensor C ircuit Low P0A25 G enerator Torque S ensor C ircuit H igh
P2011 Intake M anifold R unner C ontrol C ircuit/O pen (B ank 2) P2012 Intake M anifold R unner C ontrol C ircuit Low (B ank 2) P2013 Intake M anifold R unner C ontrol C ircuit H igh (B ank 2) P2014 Intake M anifold R unner P osition S ensor/S w itch C ircuit (B ank 1)
P0A26 G enerator Torque S ensor C ircuit Interm ittent
DTCs, English
&
P2015 Intake M anifold R unner P osition S ensor/S w itch C ircuit R ange/P erform ance (B ank 1) P2016 Intake M anifold R unner P osition S ensor/S w itch C ircuit Low (B ank 1) P2017 Intake M anifold R unner P osition S ensor/S w itch C ircuit H igh (B ank 1) P2018 Intake M anifold R unner P osition S ensor/S w itch C ircuit Interm ittent (B ank 1) P2019 Intake M anifold R unner P osition S ensor/S w itch C ircuit (B ank 2) P2020 Intake M anifold R unner P osition S ensor/S w itch C ircuit R ange/P erform ance (B ank 2) P2021 Intake M anifold R unner P osition S ensor/S w itch C ircuit Low (B ank 2) P2022 Intake M anifold R unner P osition S ensor/S w itch C ircuit H igh (B ank 2) P2023 Intake M anifold R unner P osition S ensor/S w itch C ircuit Interm ittent (B ank 2) P2024 E vaporative E m issions (E VA P) Fuel Vapor Tem perature S ensor C ircuit P2025 E vaporative E m issions (E VA P) Fuel Vapor Tem perature S ensor P erform ance P2026 E vaporative E m issions (E VA P) Fuel Vapor Tem perature S ensor C ircuit Low Voltage P2027 E vaporative E m issions (E VA P) Fuel Vapor Tem perature S ensor C ircuit H igh Voltage P2028 E vaporative E m issions (E VA P) Fuel Vapor Tem perature S ensor C ircuit Interm ittent P2029 Fuel Fired H eater D isabled P2030 Fuel Fired H eater P erform ance P2031 E xhaust G as Tem perature S ensor C ircuit (B ank 1 S ensor 2) P2032 E xhaust G as Tem perature S ensor C ircuit Low (B ank 1 S ensor 2)
& &
P2033 E xhaust G as Tem perature S ensor C ircuit H igh (B ank 1 S ensor 2) P2034 E xhaust G as Tem perature S ensor C ircuit (B ank 2 S ensor 2) P2035 E xhaust G as Tem perature S ensor C ircuit Low (B ank 2 S ensor 2) P2036 E xhaust G as Tem perature S ensor C ircuit H igh (Bank 2 S ensor 2) P2037 R eductant Injection A ir P ressure S ensor C ircuit P2038 R eductant Injection A ir P ressure S ensor C ircuit R ange/P erform ance P2039 R eductant Injection A ir P ressure S ensor C ircuit Low Input P2040 R eductant Injection A ir P ressure S ensor C ircuit H igh Input P2041 R eductant Injection A ir P ressure S ensor C ircuit Interm ittent P2042 R eductant Tem perature S ensor C ircuit P2043 R eductant Tem perature S ensor C ircuit R ange/P erform ance P2044 R eductant Tem perature S ensor C ircuit Low Input P2045 R eductant Tem perature S ensor C ircuit H igh Input P2046 R eductant Tem perature S ensor C ircuit Interm ittent P2047 R eductant Injector C ircuit/O pen (B ank 1 U nit 1) P2048 R eductant Injector C ircuit Low (B ank 1 U nit 1) P2049 R eductant Injector C ircuit H igh (B ank 1 U nit 1) P2050 R eductant Injector C ircuit/O pen (B ank 2 U nit 1)
DTCs, English
P2051 R eductant Injector C ircuit Low (B ank 2 U nit 1)
P2071 Intake M anifold Tuning (IM T) Valve S tuck C losed
P2052 R eductant Injector C ircuit H igh (Bank 2 U nit 1)
P2075 Intake M anifold Tuning (IM T) Valve P osition S ensor/S w itch C ircuit
P2053 R eductant Injector C ircuit/O pen (Bank 1 U nit 2)
P2076 Intake M anifold Tuning (IM T) Valve P osition S ensor/S w itch C ircuit R ange/P erform ance
P2054 R eductant Injector C ircuit Low (B ank 1 U nit 2)
P2077 Intake M anifold Tuning (IM T) Valve P osition S ensor/S w itch C ircuit Low
P2055 R eductant Injector C ircuit H igh (Bank 1 U nit 2)
P2078 Intake M anifold Tuning (IM T) Valve P osition S ensor/S w itch C ircuit H igh
P2056 R eductant Injector C ircuit/O pen (Bank 2 U nit 2)
P2079 Intake M anifold Tuning (IM T) Valve P osition S ensor/S w itch C ircuit Interm ittent
P2057 R eductant Injector C ircuit Low (B ank 2 U nit 2)
P2080 E xhaust G as Tem perature S ensor C ircuit R ange/P erform ance (B ank 1 S ensor 1)
P2058 R eductant Injector C ircuit H igh (Bank 2 U nit 2)
P2081 E xhaust G as Tem perature S ensor C ircuit Interm ittent (B ank 1 S ensor 1)
P2059 R eductant Injection A ir P um p C ontrol C ircuit/O pen
P2082 E xhaust G as Tem perature S ensor C ircuit R ange/P erform ance (B ank 2 S ensor 1)
P2060 R eductant Injection A ir P um p C ontrol C ircuit Low
P2083 E xhaust G as Tem perature S ensor C ircuit Interm ittent (B ank 2 S ensor 1)
P2061 R eductant Injection A ir P um p C ontrol C ircuit H igh
P2084 E xhaust G as Tem perature S ensor C ircuit R ange/P erform ance (B ank 1 S ensor 2)
P2062 R eductant S upply C ontrol C ircuit/O pen
P2085 E xhaust G as Tem perature S ensor C ircuit Interm ittent (B ank 1 S ensor 2)
P2063 R eductant S upply C ontrol C ircuit Low P2064 R eductant S upply C ontrol C ircuit H igh
P2086 E xhaust G as Tem perature S ensor C ircuit R ange/P erform ance (B ank 2 S ensor 2)
P2065 Fuel Level S ensor "B " C ircuit
P2087 E xhaust G as Tem perature S ensor C ircuit Interm ittent (B ank 2 S ensor 2)
P2066 Fuel Level S ensor "B " P erform ance
P2088 A C am shaft P osition A ctuator C ontrol C ircuit Low (B ank 1)
P2067 Fuel Level S ensor "B " C ircuit Low P2068 Fuel Level S ensor "B " C ircuit H igh P2069 Fuel Level S ensor "B " C ircuit Interm ittent P2070 Intake M anifold Tuning (IM T) Valve S tuck O pen
DTCs, English
P2089 A C am shaft P osition A ctuator C ontrol C ircuit H igh (Bank 1) P2090 B C am shaft P osition A ctuator C ontrol C ircuit Low (B ank 1) P2091 B C am shaft P osition A ctuator C ontrol C ircuit H igh (Bank 1)
&
P2092 A C am shaft P osition A ctuator C ontrol C ircuit Low (B ank 2)
P2111 Throttle A ctuator C ontrol S ystem - S tuck O pen
P2093 A C am shaft P osition A ctuator C ontrol C ircuit H igh (B ank 2)
P2112 Throttle A ctuator C ontrol S ystem - S tuck C losed
P2094 B C am shaft P osition A ctuator C ontrol C ircuit Low (B ank 2)
P2113 Throttle/P edal P osition S ensor "B " M inim um S top P erform ance
P2095 B C am shaft P osition A ctuator C ontrol C ircuit H igh (B ank 2)
P2114 Throttle/P edal P osition S ensor "C " M inim um S top P erform ance
P2096 P ost C atalyst Fuel Trim System Too Lean (B ank 1)
P2115 Throttle/P edal P osition S ensor "D " M inim um S top P erform ance
P2097 P ost C atalyst Fuel Trim System Too R ich (B ank 1)
P2116 Throttle/P edal P osition S ensor "E " M inim um S top P erform ance
P2098 P ost C atalyst Fuel Trim System Too Lean (B ank 2)
P2117 Throttle/P edal P osition S ensor "F" M inim um S top P erform ance
P2099 P ost C atalyst Fuel Trim System Too R ich (B ank 2)
P2118 Throttle A ctuator C ontrol M otor C urrent R ange/P erform ance
P2100 Throttle A ctuator C ontrol M otor C ircuit/O pen
P2119 Throttle A ctuator C ontrol Throttle B ody R ange/P erform ance
P2101 Throttle A ctuator C ontrol M otor C ircuit R ange/P erform ance P2102 Throttle A ctuator C ontrol M otor C ircuit Low P2103 Throttle A ctuator C ontrol M otor C ircuit H igh P2104 Throttle A ctuator C ontrol S ystem - Forced Idle P2105 Throttle A ctuator C ontrol S ystem - Forced E ngine S hutdow n
P2120 Throttle/P edal P osition S ensor/S w itch "D " C ircuit P2121 Throttle/P edal P osition S ensor/S w itch "D " C ircuit R ange/P erform ance P2122 Throttle/P edal P osition S ensor/S w itch "D " C ircuit Low Input P2123 Throttle/P edal P osition S ensor/S w itch "D " C ircuit H igh Input
P2106 Throttle A ctuator C ontrol S ystem - Forced Lim ited P ow er
P2124 Throttle/P edal P osition S ensor/S w itch "D " C ircuit Interm ittent
P2107 Throttle A ctuator C ontrol M odule P rocessor
P2125 Throttle/P edal P osition S ensor/S w itch "E " C ircuit
P2108 Throttle A ctuator C ontrol M odule P erform ance P2109 Throttle/P edal P osition S ensor "A " M inim um S top P erform ance P2110 Throttle A ctuator C ontrol S ystem - Forced Lim ited R P M
& &
P2126 Throttle/P edal P osition S ensor/S w itch "E " C ircuit R ange/P erform ance P2127 Throttle/P edal P osition S ensor/S w itch "E " C ircuit Low Input P2128 Throttle/P edal P osition S ensor/S w itch "E " C ircuit H igh Input
DTCs, English
P2129 Throttle/P edal P osition S ensor/S w itch "E " C ircuit Interm ittent
P2147 Fuel Injector G roup “A ” S upply Voltage C ircuit Low
P2130 Throttle/P edal P osition S ensor/S w itch “F” C ircuit
P2148 Fuel Injector G roup “A ” S upply Voltage C ircuit H igh
P2131 Throttle/P edal P osition S ensor/S w itch “F” C ircuit R ange P erform ance
P2149 Fuel Injector G roup “B ” S upply Voltage C ircuit/O pen
P2132 Throttle/P edal P osition S ensor/S w itch “F” C ircuit Low Input
P2150 Fuel Injector G roup “B ” S upply Voltage C ircuit Low
P2133 Throttle/P edal P osition S ensor/S w itch “F” C ircuit H igh Input
P2151 Fuel Injector G roup “B ” S upply Voltage C ircuit H igh
P2134 Throttle/P edal P osition S ensor/S w itch “F” C ircuit Interm ittent
P2152 Fuel Injector G roup “C ” S upply Voltage C ircuit/O pen
P2135 Throttle/P edal P osition S ensor/S w itch “A ” / “B ” Voltage C orrelation
P2153 Fuel Injector G roup “C ” S upply Voltage C ircuit Low
P2136 Throttle/P edal P osition S ensor/S w itch “A ” / “C ” Voltage C orrelation
P2154 Fuel Injector G roup “C ” S upply Voltage C ircuit H igh
P2137 Throttle/P edal P osition S ensor/S w itch “B ” / “C ” Voltage C orrelation
P2155 Fuel Injector G roup “D ” S upply Voltage C ircuit/O pen
P2138 Throttle/P edal P osition S ensor/S w itch “D ” / “E ” Voltage C orrelation
P2156 Fuel Injector G roup “D ” S upply Voltage C ircuit Low
P2139 Throttle/P edal P osition S ensor/S w itch “D ” / “F” Voltage C orrelation
P2157 Fuel Injector G roup “D ” S upply Voltage C ircuit H igh
P2140 Throttle/P edal P osition S ensor/S w itch “E ” / “F” Voltage C orrelation
P2158 Vehicle Speed S ensor “B ”
P2141 E xhaust G as R ecirculation Throttle C ontrol C ircuit Low P2142 E xhaust G as R ecirculation Throttle C ontrol C ircuit H igh P2143 E xhaust G as R ecirculation Vent C ontrol C ircuit/O pen P2144 E xhaust G as R ecirculation Vent C ontrol C ircuit Low P2145 E xhaust G as R ecirculation Vent C ontrol C ircuit H igh P2146 Fuel Injector G roup “A ” Supply Voltage C ircuit/O pen
DTCs, English
P2159 Vehicle Speed S ensor “B ” R ange/P erform ance P2160 Vehicle Speed S ensor “B ” C ircuit Low P2161 Vehicle S peed S ensor “B ” Interm ittent/E rratic P2162 Vehicle Speed S ensor “A ” / “B ” C orrelation P2163 Throttle/P edal P osition S ensor “A ” M axim um S top P erform ance P2164 Throttle/P edal P osition S ensor “B ” M axim um S top P erform ance P2165 Throttle/P edal P osition S ensor “C ” M axim um S top P erform ance
&
P2166 Throttle/P edal P osition S ensor “D ” M axim um S top P erform ance
P2185 E ngine C oolant Tem perature S ensor 2 C ircuit H igh
P2167 Throttle/P edal P osition S ensor “E ” M axim um S top P erform ance
P2186 E ngine C oolant Tem perature S ensor 2 C ircuit Interm ittent/E rratic
P2168 Throttle/P edal P osition S ensor “F” M axim um S top P erform ance
P2187 S ystem Too Lean at Idle (B ank 1)
P2169 E xhaust P ressure R egulator Vent S olenoid C ontrol C ircuit/O pen
P2188 S ystem Too R ich at Idle (Bank 1) P2189 S ystem Too Lean at Idle (B ank 2)
P2170 E xhaust P ressure R egulator Vent S olenoid C ontrol C ircuit Low
P2190 S ystem Too R ich at Idle (Bank 2)
P2171 E xhaust P ressure R egulator Vent S olenoid C ontrol C ircuit H igh
P2191 S ystem Too Lean at H igher Load (B ank 1)
P2172 Throttle A ctuator C ontrol S ystem – S udden H igh Airflow D etected P2173 Throttle A ctuator C ontrol S ystem – H igh A irflow D etected P2174 Throttle A ctuator C ontrol S ystem – S udden Low A irflow D etected P2175 Throttle A ctuator C ontrol S ystem – Low A irflow D etected P2176 Throttle A ctuator C ontrol S ystem – Idle P osition N ot Learned P2177 S ystem Too Lean O ff Idle (B ank 1) P2178 S ystem Too R ich O ff Idle (B ank 1) P2179 S ystem Too Lean O ff Idle (B ank 2) P2180 S ystem Too R ich O ff Idle (B ank 2) P2181 C ooling S ystem P erform ance P2182 E ngine C oolant Tem perature S ensor 2 C ircuit P2183 E ngine C oolant Tem perature S ensor 2 C ircuit R ange/P erform ance P2184 E ngine C oolant Tem perature S ensor 2 C ircuit Low
& &
P2192 S ystem Too R ich at H igher Load (B ank 1) P2193 S ystem Too Lean at H igher Load (B ank 2) P2194 S ystem Too R ich at H igher Load (B ank 2) P2195 O 2 S ensor S ignal S tuck Lean (B ank 1 S ensor 1) P2196 O 2 S ensor S ignal S tuck R ich (B ank 1 S ensor 1) P2197 O 2 S ensor S ignal S tuck Lean (B ank 2 S ensor 1) P2198 O 2 S ensor S ignal S tuck R ich (B ank 2 S ensor 1) P2199 Intake A ir Tem perature S ensor 1 / 2 C orrelation P2200 N O x S ensor C ircuit (B ank 1) P2201 N O x S ensor C ircuit R ange/P erform ance (B ank 1) P2202 N O x S ensor C ircuit Low Input (B ank 1) P2203 N O x S ensor C ircuit H igh Input (B ank 1) P2204 N O x S ensor C ircuit Interm ittent Input (B ank 1) P2205 N O x S ensor H eater C ontrol C ircuit/O pen (B ank 1)
DTCs, English
P2206 N O x S ensor H eater C ontrol C ircuit Low (B ank 1)
P2225 N O x S ensor H eater S ense C ircuit Interm ittent (B ank 2)
P2207 N O x S ensor H eater C ontrol C ircuit H igh (B ank 1)
P2226 B arom etric P ressure C ircuit
P2208 N O x S ensor H eater S ense C ircuit (B ank 1) P2209 N O x S ensor H eater S ense C ircuit R ange/P erform ance (B ank 1) P2210 N O x S ensor H eater S ense C ircuit Low Input (B ank 1) P2211 N O x S ensor H eater S ense C ircuit H igh Input (B ank 1) P2212 N O x S ensor H eater S ense C ircuit Interm ittent (B ank 1) P2213 N O x S ensor C ircuit (Bank 2) P2214 N O x S ensor C ircuit R ange/P erform ance (B ank 2) P2215 N O x S ensor C ircuit Low Input (B ank 2)
P2227 B arom etric P ressure C ircuit R ange/P erform ance P2228 B arom etric P ressure C ircuit Low P2229 B arom etric P ressure C ircuit H igh P2230 B arom etric P ressure C ircuit Interm ittent P2231 O 2 S ensor S ignal C ircuit S horted to H eater C ircuit (B ank 1 S ensor 1) P2232 O 2 S ensor S ignal C ircuit S horted to H eater C ircuit (B ank 1 S ensor 2) P2233 O 2 S ensor S ignal C ircuit S horted to H eater C ircuit (B ank 1 S ensor 3) P2234 O 2 S ensor S ignal C ircuit S horted to H eater C ircuit (B ank 2 S ensor 1)
P2216 N O x S ensor C ircuit H igh Input (B ank 2)
P2235 O 2 S ensor S ignal C ircuit S horted to H eater C ircuit (B ank 2 S ensor 2)
P2217 N O x S ensor C ircuit Interm ittent Input (B ank 2)
P2236 O 2 S ensor S ignal C ircuit S horted to H eater C ircuit (B ank 2 S ensor 3)
P2218 N O x S ensor H eater C ontrol C ircuit/O pen (B ank 2)
P2237 O 2 S ensor P ositive C urrent C ircuit/O pen (B ank 1 S ensor 1)
P2219 N O x S ensor H eater C ontrol C ircuit Low (B ank 2)
P2238 O 2 S ensor P ositive C urrent C ircuit Low (B ank 1 S ensor 1)
P2220 N O x S ensor H eater C ontrol C ircuit H igh (B ank 2)
P2239 O 2 S ensor P ositive C urrent C ircuit H igh (B ank 1 S ensor 1)
P2221 N O x S ensor H eater S ense C ircuit (B ank 2)
P2240 O 2 S ensor P ositive C urrent C ircuit/O pen (B ank 2 S ensor 1)
P2222 N O x S ensor H eater S ense C ircuit R ange/P erform ance (B ank 2) P2223 N O x S ensor H eater S ense C ircuit Low (B ank 2) P2224 N O x S ensor H eater S ense C ircuit H igh (B ank 2)
DTCs, English
P2241 O 2 S ensor P ositive C urrent C ircuit Low (B ank 2 S ensor 1) P2242 O 2 S ensor P ositive C urrent C ircuit H igh (B ank 2 S ensor 1) P2243 O 2 S ensor R eference Voltage C ircuit/O pen (B ank 1 S ensor 1)
&
P2244 O 2 S ensor R eference Voltage P erform ance (B ank 1 S ensor 1)
P2262 Turbo B oost P ressure N ot D etected M echanical
P2245 O 2 S ensor R eference Voltage C ircuit Low (B ank 1 S ensor 1)
P2263 Turbo/S uper C harger B oost S ystem P erform ance
P2246 O 2 S ensor R eference Voltage C ircuit H igh (B ank 1 S ensor 1)
P2264 W ater in Fuel S ensor C ircuit
P2247 O 2 S ensor R eference Voltage C ircuit/O pen (B ank 2 S ensor 1) P2248 O 2 S ensor R eference Voltage P erform ance (B ank 2 S ensor 1) P2249 O 2 S ensor R eference Voltage C ircuit Low (B ank 2 S ensor 1) P2250 O 2 S ensor R eference Voltage C ircuit H igh (B ank 2 S ensor 1) P2251 O 2 S ensor N egative C urrent C ontrol C ircuit/O pen (B ank 1 S ensor 1) P2252 O 2 S ensor N egative C urrent C ontrol C ircuit Low (B ank 1 S ensor 1) P2253 O 2 S ensor N egative C urrent C ontrol C ircuit H igh (B ank 1 S ensor 1) P2254 O 2 S ensor N egative C urrent C ontrol C ircuit/O pen (B ank 2 S ensor 1) P2255 O 2 S ensor N egative C urrent C ontrol C ircuit Low (B ank 2 S ensor 1) P2256 O 2 S ensor N egative C urrent C ontrol C ircuit H igh (B ank 2 S ensor 1) P2257 S econdary A ir Injection S ystem C ontrol “A ” C ircuit Low P2258 S econdary A ir Injection S ystem C ontrol “A ” C ircuit H igh P2259 S econdary A ir Injection S ystem C ontrol “B ” C ircuit Low P2260 S econdary A ir Injection S ystem C ontrol “B ” C ircuit H igh P2261 Turbo/S uper C harger B y Valve M echanical
& &
P2265 W ater in Fuel S ensor C ircuit R ange/P erform ance P2266 W ater in Fuel S ensor C ircuit Low P2267 W ater in Fuel S ensor C ircuit H igh P2268 W ater in Fuel S ensor C ircuit Interm ittent P2269 W ater in Fuel C ondition P2270 O 2 S ensor S ignal S tuck Lean (B ank 1 S ensor 2) P2271 O 2 S ensor S ignal S tuck R ich (B ank 1 S ensor 2) P2272 O 2 S ensor S ignal S tuck Lean (B ank 2 S ensor 2) P2273 O 2 S ensor S ignal S tuck R ich (B ank 2 S ensor 2) P2274 O 2 S ensor S ignal S tuck Lean (B ank 1 S ensor 3) P2275 O 2 S ensor S ignal S tuck R ich (B ank 1 S ensor 3) P2276 O 2 S ensor S ignal S tuck Lean (B ank 2 S ensor 3) P2277 O 2 S ensor S ignal S tuck R ich (B ank 2 S ensor 3) P2278 O 2 S ensor S ignals S w apped B ank 1 S ensor 3 / B ank 2 S ensor 3 P2279 Intake A ir S ystem Leak P2280 A ir Flow R estriction / A ir Leak B etw een A ir Filter and M A F P2281 A ir Leak B etw een M A F and Throttle B ody
DTCs, English
P2282 A ir Leak B etw een Throttle B ody and Intake Valves P2283 Injector C ontrol P ressure S ensor C ircuit P2284 Injector C ontrol P ressure S ensor C ircuit R ange/P erform ance P2285 Injector C ontrol P ressure S ensor C ircuit Low P2286 Injector C ontrol P ressure S ensor C ircuit H igh P2287 Injector C ontrol P ressure S ensor C ircuit Interm ittent P2288 Injector C ontrol P ressure Too H igh P2289 Injector C ontrol P ressure Too H igh – E ngine O ff
P2303 Ignition C oil “B ” P rim ary C ontrol C ircuit Low P2304 Ignition C oil “B ” P rim ary C ontrol C ircuit H igh P2305 Ignition C oil “B ” S econdary C ircuit P2306 Ignition C oil “C ” P rim ary C ontrol C ircuit Low P2307 Ignition C oil “C ” P rim ary C ontrol C ircuit H igh P2308 Ignition C oil “C ” S econdary C ircuit P2309 Ignition C oil “D ” P rim ary C ontrol C ircuit Low P2310 Ignition C oil “D ” P rim ary C ontrol C ircuit H igh P2311 Ignition C oil “D ” S econdary C ircuit P2312 Ignition C oil “E ” P rim ary C ontrol C ircuit Low
P2290 Injector C ontrol P ressure Too Low
P2313 Ignition C oil “E ” P rim ary C ontrol C ircuit H igh
P2291 Injector C ontrol P ressure Too Low – E ngine C ranking
P2314 Ignition C oil “E ” S econdary C ircuit
P2292 Injector C ontrol P ressure E rratic P2293 Fuel P ressure R egulator 2 P erform ance P2294 Fuel P ressure R egulator 2 C ontrol C ircuit P2295 Fuel P ressure R egulator 2 C ontrol C ircuit Low P2296 Fuel P ressure R egulator 2 C ontrol C ircuit H igh P2297 O 2 S ensor O ut of R ange D uring D eceleration (Bank 1 S ensor 1) P2298 O 2 S ensor O ut of R ange D uring D eceleration (Bank 2 S ensor 1) P2299 B rake P edal P osition / A ccelerator P edal P osition Incom patible P2300 Ignition C oil “A ” P rim ary C ontrol C ircuit Low P2301 Ignition C oil “A ” P rim ary C ontrol C ircuit H igh P2302 Ignition C oil “A ” S econdary C ircuit
DTCs, English
P2315 Ignition C oil “F” P rim ary C ontrol C ircuit Low P2316 Ignition C oil “F” P rim ary C ontrol C ircuit H igh P2317 Ignition C oil “F” S econdary C ircuit P2318 Ignition C oil “G ” P rim ary C ontrol C ircuit Low P2319 Ignition C oil “G ” P rim ary C ontrol C ircuit H igh P2320 Ignition C oil “G ” S econdary C ircuit P2321 Ignition C oil “H ” P rim ary C ontrol C ircuit Low P2322 Ignition C oil “H ” P rim ary C ontrol C ircuit H igh P2323 Ignition C oil “H ” S econdary C ircuit P2324 Ignition C oil “I” Prim ary C ontrol C ircuit Low P2325 Ignition C oil “I” Prim ary C ontrol C ircuit H igh P2326 Ignition C oil “I” Secondary C ircuit P2327 Ignition C oil “J” P rim ary C ontrol C ircuit Low
&
P2328 Ignition C oil “J” P rim ary C ontrol C ircuit H igh P2329 Ignition C oil “J” S econdary C ircuit P2330 Ignition C oil “K ” P rim ary C ontrol C ircuit Low P2331 Ignition C oil “K ” P rim ary C ontrol C ircuit H igh P2332 Ignition C oil “K ” S econdary C ircuit P2333 Ignition C oil “L” P rim ary C ontrol C ircuit Low P2334 Ignition C oil “L” P rim ary C ontrol C ircuit H igh P2335 Ignition C oil “L” S econdary C ircuit P2336 C ylinder #1 A bove K nock Threshold
P2403 E vaporative E m ission S ystem Leak D etection P um p Sense C ircuit/O pen P2404 E vaporative E m ission S ystem Leak D etection P um p Sense C ircuit R ange/P erform ance P2405 E vaporative E m ission S ystem Leak D etection P um p Sense C ircuit Low P2406 E vaporative E m ission S ystem Leak D etection P um p Sense C ircuit H igh P2407 E vaporative E m ission S ystem Leak D etection P um p Sense C ircuit Interm ittent/E rratic P2408 Fuel C ap S ensor/S w itch C ircuit
P2337 C ylinder #2 A bove K nock Threshold
P2409 Fuel C ap S ensor/S w itch C ircuit R ange/P erform ance
P2338 C ylinder #3 A bove K nock Threshold
P2410 Fuel C ap S ensor/S w itch C ircuit Low
P2339 C ylinder #4 A bove K nock Threshold P2340 C ylinder #5 A bove K nock Threshold P2341 C ylinder #6 A bove K nock Threshold P2342 C ylinder #7 A bove K nock Threshold P2343 C ylinder #8 A bove K nock Threshold P2344 C ylinder #9 A bove K nock Threshold P2345 C ylinder #10 A bove K nock Threshold P2346 C ylinder #11 A bove K nock Threshold P2347 C ylinder #12 A bove K nock Threshold P2400 E vaporative E m ission S ystem Leak D etection P um p C ontrol C ircuit/O pen P2401 E vaporative E m ission S ystem Leak D etection P um p C ontrol C ircuit Low P2402 E vaporative E m ission S ystem Leak D etection P um p C ontrol C ircuit H igh
& &
P2411 Fuel C ap S ensor/S w itch C ircuit H igh P2412 Fuel C ap S ensor/S w itch C ircuit Interm ittent/E rratic P2413 E xhaust G as R ecirculation S ystem P erform ance P2414 O 2 S ensor E xhaust S am ple E rror (B ank 1 S ensor 1) P2415 O 2 S ensor E xhaust S am ple E rror (B ank 2 S ensor 1) P2416 O 2 S ensor S ignals S w apped B ank 1 S ensor 2 / B ank 1 S ensor 3 P2417 O 2 S ensor S ignals S w apped B ank 2 S ensor 2 / B ank 2 S ensor 3 P2418 E vaporative E m ission S ystem S w itching Valve C ontrol C ircuit /O pen P2419 E vaporative E m ission S ystem S w itching Valve C ontrol C ircuit Low P2420 E vaporative E m ission S ystem S w itching Valve C ontrol C ircuit H igh
DTCs, English
P2421 E vaporative E m ission S ystem Vent Valve S tuck O pen
P2517 A /C R efrigerant P ressure S ensor “B ” C ircuit Low
P2422 E vaporative E m ission S ystem Vent Valve S tuck C losed
P2518 A /C R efrigerant P ressure S ensor “B ” C ircuit H igh
P2423 H C A dsorption C atalyst E fficiency B elow Threshold (B ank 1)
P2519 A /C R equest “A ” C ircuit
P2424 H C A dsorption C atalyst E fficiency B elow Threshold (B ank 2) P2500 G enerator Lam p/L-Term inal C ircuit Low P2501 G enerator Lam p/L-Term inal C ircuit H igh P2502 C harging S ystem Voltage P2503 C harging S ystem Voltage Low P2504 C harging S ystem Voltage H igh P2505 E C M /P C M P ow er Input S ignal P2506 E C M /P C M P ow er Input S ignal R ange/P erform ance P2507 E C M /P C M P ow er Input S ignal Low P2508 E C M /P C M P ow er Input S ignal H igh P2509 E C M /P C M P ow er Input S ignal Interm ittent P2510 E C M /P C M P ow er R elay S ense C ircuit R ange/P erform ance P2511 E C M /P C M P ow er R elay S ense C ircuit Interm ittent P2512 E vent D ata R ecorder R equest C ircuit/ O pen
P2520 A /C R equest “A ” C ircuit Low P2521 A /C R equest “A ” C ircuit H igh P2522 A /C R equest “B ” C ircuit P2523 A /C R equest “B ” C ircuit Low P2524 A /C R equest “B ” C ircuit H igh P2525 Vacuum R eservoir P ressure S ensor C ircuit P2526 Vacuum R eservoir P ressure S ensor C ircuit R ange/P erform ance P2527 Vacuum R eservoir P ressure S ensor C ircuit Low P2528 Vacuum R eservoir P ressure S ensor C ircuit H igh P2529 Vacuum R eservoir P ressure S ensor C ircuit Interm ittent P2530 Ignition Sw itch R un P osition C ircuit P2531 Ignition Sw itch R un P osition C ircuit Low P2532 Ignition Sw itch R un P osition C ircuit H igh P2533 Ignition Sw itch R un/S tart P osition C ircuit
P2513 E vent D ata R ecorder R equest C ircuit Low
P2534 Ignition Sw itch R un/S tart P osition C ircuit Low
P2514 E vent D ata R ecorder R equest C ircuit H igh
P2535 Ignition Sw itch R un/S tart P osition C ircuit H igh
P2515 A /C R efrigerant P ressure S ensor “B ” C ircuit P2516 A /C R efrigerant P ressure S ensor “B ” C ircuit R ange/P erform ance
DTCs, English
P2536 Ignition Sw itch A ccessory P osition C ircuit P2537 Ignition Sw itch A ccessory P osition C ircuit Low
&
P2538 Ignition Sw itch Accessory P osition C ircuit H igh
P2557 E ngine C oolant Level S ensor/S w itch C ircuit R ange/P erform ance
P2539 Low P ressure Fuel S ystem S ensor C ircuit
P2558 E ngine C oolant Level S ensor/S w itch C ircuit Low
P2540 Low P ressure Fuel S ystem S ensor C ircuit R ange/P erform ance P2541 Low P ressure Fuel S ystem S ensor C ircuit Low P2542 Low P ressure Fuel S ystem S ensor C ircuit H igh P2543 Low P ressure Fuel S ystem S ensor C ircuit Interm ittent P2544 Torque M anagem ent R equest Input S ignal “A ” P2545 Torque M anagem ent R equest Input S ignal “A ” R ange/P erform ance P2546 Torque M anagem ent R equest Input S ignal “A ” Low P2547 Torque M anagem ent R equest Input S ignal “A ” H igh P2548 Torque M anagem ent R equest Input S ignal “B ” P2549 Torque M anagem ent R equest Input S ignal “B ” R ange/P erform ance
P2559 E ngine C oolant Level S ensor/S w itch C ircuit H igh P2560 E ngine C oolant Level Low P2600 C oolant P um p C ontrol C ircuit/O pen P2601 C oolant P um p C ontrol C ircuit R ange/P erform ance P2602 C oolant P um p C ontrol C ircuit Low P2603 C oolant P um p C ontrol C ircuit H igh P2604 Intake A ir H eater “A ” C ircuit R ange/P erform ance P2605 Intake A ir H eater “A ” C ircuit/O pen P2606 Intake A ir H eater “B ” C ircuit R ange/P erform ance P2607 Intake A ir H eater “B ” C ircuit Low P2608 Intake A ir H eater “B ” C ircuit H igh P2609 Intake A ir H eater S ystem P erform ance
P2550 Torque M anagem ent R equest Input “B ” S ignal Low
P2610 E C M /PC M Internal E ngine O ff Tim er P erform ance
P2551 Torque M anagem ent R equest Input “B ” S ignal H igh
P2611 A /C R efrigerant D istribution Valve C ontrol C ircuit/O pen
P2552 Throttle/Fuel Inhibit C ircuit
P2612 A /C R efrigerant D istribution Valve C ontrol C ircuit Low
P2553 Throttle/Fuel Inhibit C ircuit R ange/P erform ance P2554 Throttle/Fuel Inhibit C ircuit Low P2555 Throttle/Fuel Inhibit C ircuit H igh P2556 E ngine C oolant Level S ensor/S w itch C ircuit
P2613 A /C R efrigerant D istribution Valve C ontrol C ircuit H igh P2614 C am shaft P osition S ignal O utput C ircuit/O pen P2615 C am shaft P osition S ignal O utput C ircuit Low P2616 C am shaft P osition S ignal O utput C ircuit H igh
& &
DTCs, English
P2617 C rankshaft P osition S ignal O utput C ircuit/O pen P2618 C rankshaft P osition S ignal O utput C ircuit Low P2619 C rankshaft P osition S ignal O utput C ircuit H igh
P2637 Torque M anagem ent S ignal “A ” P2638 Torque M anagem ent S ignal “A ” R ange/P erform ance P2639 Torque M anagem ent S ignal “A ” Low
P2620 Throttle P osition O utput C ircuit/O pen
P2640 Torque M anagem ent S ignal “A ” H igh
P2621 Throttle P osition O utput C ircuit Low
P2641 Torque M anagem ent S ignal “B ”
P2622 Throttle P osition O utput C ircuit H igh
P2642 Torque M anagem ent S ignal “B ” R ange/P erform ance
P2623 Injector C ontrol P ressure R egulator C ircuit/O pen P2624 Injector C ontrol P ressure R egulator C ircuit Low P2625 Injector C ontrol P ressure R egulator C ircuit H igh P2626 O 2 S ensor P um ping C urrent Trim C ircuit/O pen (B ank 1 S ensor 1) P2627 O 2 S ensor P um ping C urrent Trim C ircuit Low (B ank 1 S ensor 1) P2628 O 2 S ensor P um ping C urrent Trim C ircuit H igh (B ank 1 S ensor 1) P2629 O 2 S ensor P um ping C urrent Trim C ircuit/O pen (B ank 2 S ensor 1) P2630 O 2 S ensor P um ping C urrent Trim C ircuit Low (B ank 2 S ensor 1) P2631 O 2 S ensor P um ping C urrent Trim C ircuit H igh (B ank 2 S ensor 1) P2632 Fuel P um p “B ” C ontrol C ircuit /O pen P2633 Fuel P um p “B ” C ontrol C ircuit Low P2634 Fuel P um p “B ” C ontrol C ircuit H igh P2635 Fuel P um p “A ” Low Flow / P erform ance P2636 Fuel P um p “B ” Low Flow / P erform ance
DTCs, English
P2643 Torque M anagem ent S ignal “B ” Low P2644 Torque M anagem ent S ignal “B ” H igh P2645 A R ocker A rm A ctuator C ontrol C ircuit/O pen (B ank 1) P2646 A R ocker A rm A ctuator S ystem P erform ance or S tuck O ff (B ank 1) P2647 A R ocker A rm A ctuator S ystem S tuck O n (B ank 1) P2648 A R ocker A rm A ctuator C ontrol C ircuit Low (B ank 1) P2649 A R ocker A rm A ctuator C ontrol C ircuit H igh (B ank 1) P2650 B R ocker A rm A ctuator C ontrol C ircuit/O pen (B ank 1) P2651 B R ocker A rm A ctuator S ystem P erform ance or S tuck O ff (B ank 1) P2652 B R ocker A rm A ctuator S ystem S tuck O n (B ank 1) P2653 B R ocker A rm A ctuator C ontrol C ircuit Low (B ank 1) P2654 B R ocker A rm A ctuator C ontrol C ircuit H igh (B ank 1)
&
P2655 A R ocker A rm Actuator C ontrol C ircuit/O pen (B ank 2) P2656 A R ocker A rm A ctuator S ystem P erform ance or S tuck O ff (Bank 2) P2657 A R ocker A rm A ctuator S ystem S tuck O n (B ank 2) P2658 A R ocker A rm A ctuator C ontrol C ircuit Low (B ank 2) P2659 A R ocker A rm A ctuator C ontrol C ircuit H igh (B ank 2) P2660 B R ocker A rm Actuator C ontrol C ircuit/O pen (B ank 2) P2661 B R ocker A rm A ctuator S ystem P erform ance or S tuck O ff (Bank 2)
P2709 S hift S olenoid “F” E lectrical P2710 S hift S olenoid “F” Interm ittent P2711 U nexpected M echanical G ear D isengagem ent P2712 H ydraulic P ow er U nit Leakage P2713 P ressure C ontrol S olenoid “D ” P2714 P ressure C ontrol S olenoid “D ” P erform ance or S tuck O ff P2715 P ressure C ontrol S olenoid “D ” S tuck O n P2716 P ressure C ontrol S olenoid “D ” E lectrical P2717 P ressure C ontrol S olenoid “D ” Interm ittent
P2662 B R ocker A rm A ctuator S ystem S tuck O n (B ank 2)
P2718 P ressure C ontrol S olenoid “D ” C ontrol C ircuit / O pen
P2663 B R ocker A rm A ctuator C ontrol C ircuit Low (B ank 2)
P2719 P ressure C ontrol S olenoid “D ” C ontrol C ircuit R ange/P erform ance
P2664 B R ocker A rm A ctuator C ontrol C ircuit H igh (B ank 2)
P2720 P ressure C ontrol S olenoid “D ” C ontrol C ircuit Low
P2700 Transm ission Friction E lem ent “A” A pply Tim e R ange/P erform ance
P2721 P ressure C ontrol S olenoid “D ” C ontrol C ircuit H igh
P2701 Transm ission Friction E lem ent “B” A pply Tim e R ange/P erform ance
P2722 P ressure C ontrol S olenoid "E "
P2702 Transm ission Friction E lem ent “C ” A pply Tim e R ange/P erform ance P2703 Transm ission Friction E lem ent “D ” A pply Tim e R ange/P erform ance P2704 Transm ission Friction E lem ent “E” A pply Tim e R ange/P erform ance P2705 Transm ission Friction E lem ent “F” A pply Tim e R ange/P erform ance P2706 S hift S olenoid “F” P2707 S hift S olenoid “F” P erform ance or S tuck O ff P2708 S hift S olenoid “F” S tuck O n
& &
P2723 P ressure C ontrol S olenoid "E " P erform ance or S tuck O ff P2724 P ressure C ontrol S olenoid "E " S tuck O n P2725 P ressure C ontrol S olenoid "E " E lectrical P2726 P ressure C ontrol S olenoid "E " Interm ittent P2727 P ressure C ontrol S olenoid "E " C ontrol C ircuit / O pen P2728 P ressure C ontrol S olenoid "E " C ontrol C ircuit R ange/P erform ance P2729 P ressure C ontrol S olenoid "E " C ontrol C ircuit Low
DTCs, English
P2730 P ressure C ontrol S olenoid "E " C ontrol C ircuit H igh
P2749 Interm ediate S haft S peed S ensor “C ” C ircuit
P2731 P ressure C ontrol S olenoid "F"
P2750 Interm ediate S haft S peed S ensor “C ” C ircuit R ange/P erform ance
P2732 P ressure C ontrol S olenoid "F" P erform ance or S tuck O ff
P2751 Interm ediate S haft S peed S ensor “C ” C ircuit N o S ignal
P2733 P ressure C ontrol S olenoid "F" S tuck O n
P2752 Interm ediate S haft S peed S ensor “C ” C ircuit Interm ittent
P2734 P ressure C ontrol S olenoid "F" E lectrical P2735 P ressure C ontrol S olenoid "F" Interm ittent P2736 P ressure C ontrol S olenoid "F" C ontrol C ircuit/O pen P2737 P ressure C ontrol S olenoid "F" C ontrol C ircuit R ange/P erform ance P2738 P ressure C ontrol S olenoid "F" C ontrol C ircuit Low P2739 P ressure C ontrol S olenoid "F" C ontrol C ircuit H igh P2740 Transm ission Fluid Tem perature Sensor "B " C ircuit" P2741 Transm ission Fluid Tem perature Sensor "B " C ircuit R ange P erform ance P2742 Transm ission Fluid Tem perature Sensor "B " C ircuit Low P2743 Transm ission Fluid Tem perature Sensor "B " C ircuit H igh P2744 Transm ission Fluid Tem perature Sensor "B " C ircuit Interm ittent P2745 Interm ediate S haft S peed S ensor “B ” C ircuit P2746 Interm ediate S haft S peed S ensor “B ” C ircuit R ange/P erform ance P2747 Interm ediate S haft S peed S ensor “B ” C ircuit N o S ignal P2748 Interm ediate S haft S peed S ensor “B ” C ircuit Interm ittent
DTCs, English
P2753 Transm ission Fluid C ooler C ontrol C ircuit/O pen P2754 Transm ission Fluid C ooler C ontrol C ircuit Low P2755 Transm ission Fluid C ooler C ontrol C ircuit H igh P2756 Torque C onverter C lutch Pressure C ontrol S olenoid P2757 Torque C onverter C lutch Pressure C ontrol S olenoid C ontrol C ircuit Perform ance or S tuck O ff P2758 Torque C onverter C lutch Pressure C ontrol S olenoid C ontrol C ircuit Stuck O n P2759 Torque C onverter C lutch Pressure C ontrol S olenoid C ontrol C ircuit Electrical P2760 Torque C onverter C lutch Pressure C ontrol S olenoid C ontrol C ircuit Interm ittent P2761 Torque C onverter C lutch Pressure C ontrol S olenoid C ontrol C ircuit/O pen P2762 Torque C onverter C lutch Pressure C ontrol S olenoid C ontrol C ircuit R ange/P erform ance P2763 Torque C onverter C lutch Pressure C ontrol S olenoid C ontrol C ircuit H igh P2764 Torque C onverter C lutch Pressure C ontrol S olenoid C ontrol C ircuit Low P2765 Input/Turbine S peed S ensor "B " C ircuit P2766 Input/Turbine S peed S ensor "B " C ircuit R ange/P erform ance
&
P2767 Input/Turbine S peed S ensor "B" C ircuit N o S ignal
P3409 C ylinder 2 D eactivation/Intake Valve C ontrol C ircuit/O pen
P2768 Input/Turbine S peed S ensor "B" C ircuit Interm ittent
P3410 C ylinder 2 D eactivation/Intake Valve C ontrol P erform ance
P2769 Torque C onverter C lutch C ircuit Low
P3411 C ylinder 2 D eactivation/Intake Valve C ontrol C ircuit Low
P2770 Torque C onverter C lutch C ircuit H igh P2A00 O 2 S ensor C ircuit R ange/P erform ance (B ank 1 S ensor 1) P2A01 O 2 S ensor C ircuit R ange/P erform ance (B ank 1 S ensor 2) P2A02 O 2 S ensor C ircuit R ange/P erform ance (B ank 1 S ensor 3) P2A03 O 2 S ensor C ircuit R ange/P erform ance (B ank 2 S ensor 1) P2A04 O 2 S ensor C ircuit R ange/P erform ance (B ank 2 S ensor 2) P2A05 O 2 S ensor C ircuit R ange/P erform ance (B ank 2 S ensor 3) P3400 C ylinder D eactivation S ystem P3401 C ylinder 1 D eactivation/Intake Valve C ontrol C ircuit/O pen P3402 C ylinder 1 D eactivation/Intake Valve C ontrol P erform ance P3403 C ylinder 1 D eactivation/Intake Valve C ontrol C ircuit Low P3404 C ylinder 1 D eactivation/Intake Valve C ontrol C ircuit H igh P3405 C ylinder 1 E xhaust Valve C ontrol C ircuit/O pen P3406 C ylinder 1 E xhaust Valve C ontrol P erform ance P3407 C ylinder 1 E xhaust Valve C ontrol C ircuit Low P3408 C ylinder 1 E xhaust Valve C ontrol C ircuit H igh
& &
P3412 C ylinder 2 D eactivation/Intake Valve C ontrol C ircuit H igh P3413 C ylinder 2 E xhaust Valve C ontrol C ircuit/O pen P3414 C ylinder 2 E xhaust Valve C ontrol P erform ance P3415 C ylinder 2 E xhaust Valve C ontrol C ircuit Low P3416 C ylinder 2 E xhaust Valve C ontrol C ircuit H igh P3417 C ylinder 3 D eactivation/Intake Valve C ontrol C ircuit/O pen P3418 C ylinder 3 D eactivation/Intake Valve C ontrol P erform ance P3419 C ylinder 3 D eactivation/Intake Valve C ontrol C ircuit Low P3420 C ylinder 3 D eactivation/Intake Valve C ontrol C ircuit H igh P3421 C ylinder 3 E xhaust Valve C ontrol C ircuit/O pen P3422 C ylinder 3 E xhaust Valve C ontrol P erform ance P3423 C ylinder 3 E xhaust Valve C ontrol C ircuit Low P3424 C ylinder 3 E xhaust Valve C ontrol C ircuit H igh P3425 C ylinder 4 D eactivation/Intake Valve C ontrol C ircuit/O pen P3426 C ylinder 4 D eactivation/Intake Valve C ontrol P erform ance
DTCs, English
P3427 C ylinder 4 D eactivation/Intake Valve C ontrol C ircuit Low
P3445 C ylinder 6 E xhaust Valve C ontrol C ircuit/O pen
P3428 C ylinder 4 D eactivation/Intake Valve C ontrol C ircuit H igh
P3446 C ylinder 6 E xhaust Valve C ontrol P erform ance
P3429 C ylinder 4 E xhaust Valve C ontrol C ircuit/O pen
P3447 C ylinder 6 E xhaust Valve C ontrol C ircuit Low
P3430 C ylinder 4 E xhaust Valve C ontrol P erform ance
P3448 C ylinder 6 E xhaust Valve C ontrol C ircuit H igh
P3431 C ylinder 4 E xhaust Valve C ontrol C ircuit Low
P3449 C ylinder 7 D eactivation/Intake Valve C ontrol C ircuit/O pen
P3432 C ylinder 4 E xhaust Valve C ontrol C ircuit H igh
P3450 C ylinder 7 D eactivation/Intake Valve C ontrol P erform ance
P3433 C ylinder 5 D eactivation/Intake Valve C ontrol C ircuit/O pen
P3451 C ylinder 7 D eactivation/Intake Valve C ontrol C ircuit Low
P3434 C ylinder 5 D eactivation/Intake Valve C ontrol P erform ance
P3452 C ylinder 7 D eactivation/Intake Valve C ontrol C ircuit H igh
P3435 C ylinder 5 D eactivation/Intake Valve C ontrol C ircuit Low
P3453 C ylinder 7 E xhaust Valve C ontrol C ircuit/O pen
P3436 C ylinder 5 D eactivation/Intake Valve C ontrol C ircuit H igh
P3454 C ylinder 7 E xhaust Valve C ontrol P erform ance
P3437 C ylinder 5 E xhaust Valve C ontrol C ircuit/O pen
P3455 C ylinder 7 E xhaust Valve C ontrol C ircuit Low
P3438 C ylinder 5 E xhaust Valve C ontrol P erform ance
P3456 C ylinder 7 E xhaust Valve C ontrol C ircuit H igh
P3439 C ylinder 5 E xhaust Valve C ontrol C ircuit Low
P3457 C ylinder 8 D eactivation/Intake Valve C ontrol C ircuit/O pen
P3440 C ylinder 5 E xhaust Valve C ontrol C ircuit H igh
P3458 C ylinder 8 D eactivation/Intake Valve C ontrol P erform ance
P3441 C ylinder 6 D eactivation/Intake Valve C ontrol C ircuit/O pen
P3459 C ylinder 8 D eactivation/Intake Valve C ontrol C ircuit Low
P3442 C ylinder 6 D eactivation/Intake Valve C ontrol P erform ance
P3460 C ylinder 8 D eactivation/Intake Valve C ontrol C ircuit H igh
P3443 C ylinder 6 D eactivation/Intake Valve C ontrol C ircuit Low
P3461 C ylinder 8 E xhaust Valve C ontrol C ircuit/O pen
P3444 C ylinder 6 D eactivation/Intake Valve C ontrol C ircuit H igh
P3462 C ylinder 8 E xhaust Valve C ontrol P erform ance P3463 C ylinder 8 E xhaust Valve C ontrol C ircuit Low
DTCs, English
&
P3464 C ylinder 8 E xhaust Valve C ontrol C ircuit H igh
P3482 C ylinder 11 D eactivation/Intake Valve C ontrol P erform ance
P3465 C ylinder 9 D eactivation/Intake Valve C ontrol C ircuit/O pen
P3483 C ylinder 11 D eactivation/Intake Valve C ontrol C ircuit Low
P3466 C ylinder 9 D eactivation/Intake Valve C ontrol P erform ance
P3484 C ylinder 11 D eactivation/Intake Valve C ontrol C ircuit H igh
P3467 C ylinder 9 D eactivation/Intake Valve C ontrol C ircuit Low
P3485 C ylinder 11 E xhaust Valve C ontrol C ircuit/O pen
P3468 C ylinder 9 D eactivation/Intake Valve C ontrol C ircuit H igh
P3486 C ylinder 11 E xhaust Valve C ontrol P erform ance
P3469 C ylinder 9 E xhaust Valve C ontrol C ircuit/O pen
P3487 C ylinder 11 E xhaust Valve C ontrol C ircuit Low
P3470 C ylinder 9 E xhaust Valve C ontrol P erform ance
P3488 C ylinder 11 E xhaust Valve C ontrol C ircuit H igh
P3471 C ylinder 9 E xhaust Valve C ontrol C ircuit Low
P3489 C ylinder 12 D eactivation/Intake Valve C ontrol C ircuit/O pen
P3472 C ylinder 9 E xhaust Valve C ontrol C ircuit H igh P3473 C ylinder 10 D eactivation/Intake Valve C ontrol C ircuit/O pen P3474 C ylinder 10 D eactivation/Intake Valve C ontrol P erform ance P3475 C ylinder 10 D eactivation/Intake Valve C ontrol C ircuit Low P3476 C ylinder 10 D eactivation/Intake Valve C ontrol C ircuit H igh P3477 C ylinder 10 E xhaust Valve C ontrol C ircuit/O pen P3478 C ylinder 10 E xhaust Valve C ontrol P erform ance P3479 C ylinder 10 E xhaust Valve C ontrol C ircuit Low
P3490 C ylinder 12 D eactivation/Intake Valve C ontrol P erform ance P3491 C ylinder 12 D eactivation/Intake Valve C ontrol C ircuit Low P3492 C ylinder 12 D eactivation/Intake Valve C ontrol C ircuit H igh P3493 C ylinder 12 E xhaust Valve C ontrol C ircuit/O pen P3494 C ylinder 12 E xhaust Valve C ontrol P erform ance P3495 C ylinder 12 E xhaust Valve C ontrol C ircuit Low P3496 C ylinder 12 E xhaust Valve C ontrol C ircuit H igh U0001 H igh S peed C A N C om m unication B us
P3480 C ylinder 10 E xhaust Valve C ontrol C ircuit H igh
U0002 H igh S peed C A N C om m unication B us P erform ance
P3481 C ylinder 11 D eactivation/Intake Valve C ontrol C ircuit/O pen
U0003 H igh S peed C A N C om m unication B us (+) O pen
& &
DTCs, English
U0004 H igh Speed C A N C om m unication B us (+) Low
U0022 Low S peed C A N C om m unication B us (+) Low
U0005 H igh Speed C A N C om m unication B us (+) H igh
U0023 Low S peed C A N C om m unication B us (+) H igh
U0006 H igh Speed C A N C om m unication B us (–) O pen
U0024 Low S peed C A N C om m unication B us (–) O pen
U0007 H igh Speed C A N C om m unication B us (–) Low
U0025 Low S peed C A N C om m unication B us (–) Low
U0008 H igh Speed C A N C om m unication B us (–) H igh
U0026 Low S peed C A N C om m unication B us (–) H igh
U0009 H igh Speed C A N C om m unication B us (–) shorted to B us (+)
U0027 Low S peed C A N C om m unication B us (–) shorted to B us (+)
U0010 M edium S peed C A N C om m unication B us
U0028 Vehicle C om m unication B us A
U0011 M edium S peed C A N C om m unication B us P erform ance
U0029 Vehicle C om m unication B us A P erform ance
U0012 M edium S peed C A N C om m unication B us (+) O pen
U0030 Vehicle C om m unication B us A (+) O pen U0031 Vehicle C om m unication B us A (+) Low
U0013 M edium S peed C A N C om m unication B us (+) Low
U0032 Vehicle C om m unication B us A (+) H igh
U0014 M edium S peed C A N C om m unication B us (+) H igh
U0033 Vehicle C om m unication B us A (–) O pen
U0015 M edium S peed C A N C om m unication B us (–) O pen
U0034 Vehicle C om m unication B us A (–) Low U0035 Vehicle C om m unication B us A (–) H igh
U0016 M edium S peed C A N C om m unication B us (–) Low
U0036 Vehicle C om m unication B us A (–) shorted to B us A (+)
U0017 M edium S peed C A N C om m unication B us (–) H igh
U0037 Vehicle C om m unication B us B
U0018 M edium S peed C A N C om m unication B us (–) shorted to B us (+) U0019 Low S peed C A N C om m unication B us U0020 Low S peed C A N C om m unication B us P erform ance U0021 Low S peed C A N C om m unication B us (+) O pen
DTCs, English
U0038 Vehicle C om m unication B us B P erform ance U0039 Vehicle C om m unication B us B (+) O pen U0040 Vehicle C om m unication B us B (+) Low U0041 Vehicle C om m unication B us B (+) H igh U0042 Vehicle C om m unication B us B (–) O pen U0043 Vehicle C om m unication B us B (–) Low
&
U0044 Vehicle C om m unication B us B (–) H igh
U0068 Vehicle C om m unication B us E (+) H igh
U0045 Vehicle C om m unication B us B (–) shorted to B us B (+)
U0069 Vehicle C om m unication B us E (–) O pen
U0046 Vehicle C om m unication B us C U0047 Vehicle C om m unication B us C P erform ance
U0070 Vehicle C om m unication B us E (–) Low U0071 Vehicle C om m unication B us E (–) H igh
U0048 Vehicle C om m unication B us C (+) O pen
U0072 Vehicle C om m unication B us E (–) shorted to B us E (+)
U0049 Vehicle C om m unication B us C (+) Low
U0073 C ontrol M odule C om m unication B us O ff
U0050 Vehicle C om m unication B us C (+) H igh
U0100 Lost C om m unication W ith E C M /P C M “A ”
U0051 Vehicle C om m unication B us C (–) O pen
U0101 Lost C om m unication w ith TC M
U0052 Vehicle C om m unication B us C (–) Low
U0102 Lost C om m unication w ith Transfer C ase C ontrol M odule
U0053 Vehicle C om m unication B us C (–) H igh U0054 Vehicle C om m unication B us C (–) shorted to B us C (+) U0055 Vehicle C om m unication B us D U0056 Vehicle C om m unication B us D P erform ance U0057 Vehicle C om m unication B us D (+) O pen U0058 Vehicle C om m unication B us D (+) Low U0059 Vehicle C om m unication B us D (+) H igh
U0103 Lost C om m unication W ith G ear S hift M odule U0104 Lost C om m unication W ith C ruise C ontrol M odule U0105 Lost C om m unication W ith Fuel Injector C ontrol M odule U0106 Lost C om m unication W ith G low P lug C ontrol M odule U0107 Lost C om m unication W ith Throttle A ctuator C ontrol M odule
U0060 Vehicle C om m unication B us D (–) O pen
U0108 Lost C om m unication W ith A lternative Fuel C ontrol M odule
U0061 Vehicle C om m unication B us D (–) Low
U0109 Lost C om m unication W ith Fuel P um p C ontrol M odule
U0062 Vehicle C om m unication B us D (–) H igh U0063 Vehicle C om m unication B us D (–) shorted to B us D (+)
U0110 Lost C om m unication W ith D rive M otor C ontrol M odule
U0064 Vehicle C om m unication B us E
U0111 Lost C om m unication W ith B attery E nergy C ontrol M odule "A "
U0065 Vehicle C om m unication B us E P erform ance
U0112 Lost C om m unication W ith B attery E nergy C ontrol M odule "B "
U0066 Vehicle C om m unication B us E (+) O pen U0067 Vehicle C om m unication B us E (+) Low
& &
U0113 Lost C om m unication W ith E m issions C ritical C ontrol Inform ation
DTCs, English
U0114 Lost C om m unication W ith Four-W heel D rive C lutch C ontrol M odule
U0144 Lost C om m unication W ith B ody C ontrol M odule "D "
U0115 Lost C om m unication W ith E C M /P C M “B ”
U0145 Lost C om m unication W ith B ody C ontrol M odule "E "
U0121 Lost C om m unication W ith A nti-Lock B rake S ystem (A B S ) C ontrol M odule U0122 Lost C om m unication W ith Vehicle D ynam ics C ontrol M odule U0123 Lost C om m unication W ith Yaw R ate S ensor M odule U0124 Lost C om m unication W ith Lateral A cceleration S ensor M odule U0125 Lost C om m unication W ith M ulti-axis A cceleration S ensor M odule U0126 Lost C om m unication W ith S teering A ngle S ensor M odule U0127 Lost C om m unication W ith Tire P ressure M onitor M odule U0128 Lost C om m unication W ith P ark Brake C ontrol M odule U0129 Lost C om m unication W ith B rake S ystem C ontrol M odule U0130 Lost C om m unication W ith S teering E ffort C ontrol M odule U0131 Lost C om m unication W ith P ow er S teering C ontrol M odule U0132 Lost C om m unication W ith R ide Level C ontrol M odule U0140 Lost C om m unication W ith B ody C ontrol M odule U0141 Lost C om m unication W ith B ody C ontrol M odule "A " U0142 Lost C om m unication W ith B ody C ontrol M odule "B " U0143 Lost C om m unication W ith B ody C ontrol M odule "C "
DTCs, English
U0146 Lost C om m unication W ith G atew ay "A " U0147 Lost C om m unication W ith G atew ay "B " U0148 Lost C om m unication W ith G atew ay "C " U0149 Lost C om m unication W ith G atew ay "D " U0150 Lost C om m unication W ith G atew ay "E " U0151 Lost C om m unication W ith R estraints C ontrol M odule U0152 Lost C om m unication W ith S ide R estraints C ontrol M odule (Left) U0153 Lost C om m unication W ith S ide R estraints C ontrol M odule (R ight) U0154 Lost C om m unication W ith R estraints O ccupant S ensing C ontrol M odule U0155 Lost C om m unication W ith Instrum ent P anel C luster (IP C ) C ontrol M odule U0156 Lost C om m unication W ith Inform ation C enter "A " U0157 Lost C om m unication W ith Inform ation C enter "B " U0158 Lost C om m unication W ith H ead U p D isplay U0159 Lost C om m unication W ith P arking A ssist C ontrol M odule U0160 Lost C om m unication W ith A udible A lert C ontrol M odule U0161 Lost C om m unication W ith C om M odule U0162 Lost C om m unication W ith N avigation D isplay M odule U0163 Lost C om m unication W ith N avigation C ontrol M odule
&
U0164 Lost C om m unication W ith H VA C C ontrol M odule
U0182 Lost C om m unication W ith Lighting C ontrol M odule (Front)
U0165 Lost C om m unication W ith H VA C C ontrol M odule (R ear)
U0183 Lost C om m unication W ith Lighting C ontrol M odule (R ear)
U0166 Lost C om m unication W ith A uxiliary H eater C ontrol M odule
U0184 Lost C om m unication W ith R adio
U0167 Lost C om m unication W ith Vehicle Im m obilizer C ontrol M odule U0168 Lost C om m unication W ith Vehicle S ecurity C ontrol M odule U0169 Lost C om m unication W ith S unroof C ontrol M odule U0170 Lost C om m unication W ith "R estraints S ystem S ensor A " U0171 Lost C om m unication W ith "R estraints S ystem S ensor B " U0172 Lost C om m unication W ith "R estraints S ystem S ensor C " U0173 Lost C om m unication W ith "R estraints S ystem S ensor D " U0174 Lost C om m unication W ith "R estraints S ystem S ensor E " U0175 Lost C om m unication W ith "R estraints S ystem S ensor F" U0176 Lost C om m unication W ith "R estraints S ystem S ensor G " U0177 Lost C om m unication W ith "R estraints S ystem S ensor H " U0178 Lost C om m unication W ith "R estraints S ystem S ensor I"
U0185 Lost C om m unication W ith A ntenna C ontrol M odule U0186 Lost C om m unication W ith A udio A m plifier U0187 Lost C om m unication W ith D igital D isc P layer/C hanger M odule "A " U0188 Lost C om m unication W ith D igital D isc P layer/C hanger M odule "B " U0189 Lost C om m unication W ith D igital D isc P layer/C hanger M odule "C " U0190 Lost C om m unication W ith D igital D isc P layer/C hanger M odule "D " U0191 Lost C om m unication W ith Television U0192 Lost C om m unication W ith P ersonal C om puter U0193 Lost C om m unication W ith "D igital A udio C ontrol M odule A" U0194 Lost C om m unication W ith "D igital A udio C ontrol M odule B" U0195 Lost C om m unication W ith S ubscription E ntertainm ent R eceiver M odule U0196 Lost C om m unication W ith R ear S eat E ntertainm ent C ontrol M odule U0197 Lost C om m unication W ith Telephone C ontrol M odule
U0179 Lost C om m unication W ith "R estraints S ystem S ensor J"
U0198 Lost C om m unication W ith Telem atic C ontrol M odule
U0180 Lost C om m unication W ith A utom atic Lighting C ontrol M odule
U0199 Lost C om m unication W ith "D oor C ontrol M odule A "
U0181 Lost C om m unication W ith H eadlam p Leveling C ontrol M odule
& &
U0200 Lost C om m unication W ith "D oor C ontrol M odule B "
DTCs, English
U0201 Lost C om m unication W ith "D oor C ontrol M odule C " U0202 Lost C om m unication W ith "D oor C ontrol M odule D " U0203 Lost C om m unication W ith "D oor C ontrol M odule E " U0204 Lost C om m unication W ith "D oor C ontrol M odule F" U0205 Lost C om m unication W ith "D oor C ontrol M odule G " U0206 Lost C om m unication W ith Folding Top C ontrol M odule U0207 Lost C om m unication W ith M oveable R oof C ontrol M odule U0208 Lost C om m unication W ith "S eat C ontrol M odule A " U0209 Lost C om m unication W ith "S eat C ontrol M odule B " U0210 Lost C om m unication W ith "S eat C ontrol M odule C " U0211 Lost C om m unication W ith "S eat C ontrol M odule D " U0212 Lost C om m unication W ith S teering C olum n C ontrol M odule U0213 Lost C om m unication W ith M irror C ontrol M odule U0214 Lost C om m unication W ith R em ote Function A ctuation U0215 Lost C om m unication W ith "D oor S w itch A " U0216 Lost C om m unication W ith "D oor S w itch B "
U0220 Lost C om m unication W ith "D oor S w itch F" U0221 Lost C om m unication W ith "D oor S w itch G " U0222 Lost C om m unication W ith "D oor W indow M otor A" U0223 Lost C om m unication W ith "D oor W indow M otor B" U0224 Lost C om m unication W ith "D oor W indow M otor C " U0225 Lost C om m unication W ith "D oor W indow M otor D " U0226 Lost C om m unication W ith "D oor W indow M otor E" U0227 Lost C om m unication W ith "D oor W indow M otor F" U0228 Lost C om m unication W ith "D oor W indow M otor G " U0229 Lost C om m unication W ith H eated Steering W heel M odule U0230 Lost C om m unication W ith R ear G ate M odule U0231 Lost C om m unication W ith R ain Sensing M odule U0232 Lost C om m unication W ith S ide O bstacle D etection C ontrol M odule (Left) U0233 Lost C om m unication W ith S ide O bstacle D etection C ontrol M odule (R ight) U0234 Lost C om m unication W ith C onvenience R ecall M odule U0235 Lost C om m unication W ith C ruise C ontrol Front D istance R ange S ensor
U0217 Lost C om m unication W ith "D oor S w itch C "
U0300 Internal C ontrol M odule S oftw are Incom patibility
U0218 Lost C om m unication W ith "D oor S w itch D "
U0301 S oftw are Incom patibility w ith E C M /P C M
U0219 Lost C om m unication W ith "D oor S w itch E "
U0302 S oftw are Incom patibility w ith Transm ission C ontrol M odule
DTCs, English
&
U0303 S oftw are Incom patibility w ith Transfer C ase C ontrol M odule
U0321 S oftw are Incom patibility w ith R ide Level C ontrol M odule
U0304 S oftw are Incom patibility w ith G ear S hift C ontrol M odule
U0322 S oftw are Incom patibility w ith B ody C ontrol M odule
U0305 S oftw are Incom patibility w ith C ruise C ontrol M odule
U0323 S oftw are Incom patibility w ith Instrum ent P anel C ontrol M odule
U0306 S oftw are Incom patibility w ith Fuel Injector C ontrol M odule
U0324 S oftw are Incom patibility w ith H VA C C ontrol M odule
U0307 S oftw are Incom patibility w ith G low P lug C ontrol M odule
U0325 S oftw are Incom patibility w ith A uxiliary H eater C ontrol M odule
U0308 S oftw are Incom patibility w ith Throttle A ctuator C ontrol M odule
U0326 S oftw are Incom patibility w ith Vehicle Im m obilizer C ontrol M odule
U0309 S oftw are Incom patibility w ith A lternative Fuel C ontrol M odule
U0327 S oftw are Incom patibility w ith Vehicle S ecurity C ontrol M odule
U0310 S oftw are Incom patibility w ith Fuel P um p C ontrol M odule U0311 S oftw are Incom patibility w ith D rive M otor C ontrol M odule U0312 S oftw are Incom patibility w ith B attery E nergy C ontrol M odule A U0313 S oftw are Incom patibility w ith B attery E nergy C ontrol M odule B U0314 S oftw are Incom patibility w ith Four-W heel D rive C lutch C ontrol M odule U0315 S oftw are Incom patibility w ith A nti-Lock B rake S ystem C ontrol M odule U0316 S oftw are Incom patibility w ith Vehicle D ynam ics C ontrol M odule U0317 S oftw are Incom patibility w ith P ark B rake C ontrol M odule U0318 S oftw are Incom patibility w ith B rake S ystem C ontrol M odule U0319 S oftw are Incom patibility w ith S teering E ffort C ontrol M odule U0320 S oftw are Incom patibility w ith P ow er S teering C ontrol M odule
& &
DTCs, English
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
Intake Camshaft Position Actuator Solenoid Control Circuit Bank 1
P 2089 Short to Battery
The purpose is to diagnose electrical errors detected by the PWM Driver in ECU on the Oil Control Solenoid actuator circuit
P 2088 Short to Ground P 0010 Open Circuit
Intake Camshaft Position System Performance. Bank 1 & 2
P0011 Bank 1 P0021 Bank 2
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
The drive self check the electrical condition to determine the source of electrical failure.
SECONDARY PARAMETERS AND ENABLE CONDITIONS
Battery voltage > 11 V No previous failure on the Oil Control solenoid actuator is present
TIME LENGTH AND FREQUENCY
Recurrence Rate: 100 ms
MIL TYPE & Trips M/2
If any of the electrical failure is detected an errors flag is set after the failure counter max value is reached Failure counter > 16 (1.6 s) If this error is set the following actions are taken: Cam phasing (V function) is set to limp home (function ive) Deactivation of “Hardware Based Diagnosis with the CJ120 Deactivate Generator L & F Terminal Monitor Disable knock Control Knock control adaptation (Circuit 1) Maximum end of Pre-injection angle is used & a calibratable constant for start of injection Disable fuel quality adaptation at start (start injection time adaptation) Disable downstream lambda trim control Disable Plausibility check of WARF Sensors Disable WARF Sensors diagnosis Heater Coupling Disable Diagnosis of the WRAF Sensor Dynamic Disable Monitoring Upstream Sensor Signal Disable Monitoring Upstream Sensor Signal during pull full cutoff (PUC) Disable downstream oxygen sensor diagnosis Disable dynamic fuel trim diagnosis Disable catalyst efficiency diagnosis
The purpose of this diagnosis is to detect a difference in the camshaft position relative to the desired position (set point). To ignore temporary differences during the controller adjustment period,
Actual Cam position > desired cam position (set point) + allowed tolerance for deviation Actual camshaft position > desired position (set point) + 6 ° CKP Actual Cam position < desired cam
2004file8.doc
-
V State – enable (the cam phasing function is active – controller is active & set points are calculated)
-
Min engine speed for steady deviation < engine speed < Max
Recurrence Rate: Every 360° Crank Revolution
M/1
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
there is a calibratible cycle counter that has to expire before the diagnosis is activated. If the controller adjustment and the PWM adaptation cycles have expired and a steady position of the camshaft is the result of the actual engine state, this camshaft difference is integrated. If the integrated difference reaches a max calibrated value the Failure counter is incremented. Also, when the actual position is with in acceptable window another integrator will start and when the value of the reaches the diagnosis initialization value the failure counter is decrement.
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
position (set point) + allowed tolerance for deviation Actual camshaft position < desired position (set point) + 6 ° CKP The errors flag for intake camshaft is set after the failure counter max value is reached Failure counter > 16 (1.6s) If this error is set the following actions are taken: Cam phasing (V function) is set to limp home (function ive) Deactivation of “Hardware Based Diagnosis with the CJ120 Deactivate Generator L & F Terminal Monitor Disable knock Control Knock control adaptation (Circuit 1) Maximum end of Pre-injection angle is used & a calibratable constant for start of injection Disable fuel quality adaptation at start (start injection time adaptation) Disable downstream lambda trim control Disable Plausibility check of WARF Sensors Disable WARF Sensors diagnosis Heater Coupling Disable Diagnosis of the WRAF Sensor Dynamic Disable Monitoring Upstream Sensor Signal Disable Monitoring Upstream Sensor Signal during pull full cutoff (PUC) Disable downstream oxygen
sensor diagnosis -
Disable dynamic
fuel trim diagnosis Disable catalyst efficiency diagnosis
Cam phasing (V function) is set to limp
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
engine speed for steady deviation Table base on oil temp < N RPM < Table based on oil temp -
Min oil pressure for steady deviation < actual oil pressure < Max oil pressure for steady deviation 1 Bar < actual oil pressure < 7 bar
-
PWM adaptation cycle has expired
-
V is not in Limp Home (no failure on V electrical or mechanical)
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
home (function ive) until the transition from engine run to engine stop is detected, even if the error is resolved Exhaust Camshaft Position Actuator Solenoid Control Circuit Bank 1
P 2091 Short to Battery P 2090 Short to Ground
The purpose is to diagnose electrical errors detected by the PWM Driver in ECU on the Oil Control Solenoid actuator circuit
P 0013 Open Circuit
The drive self check the electrical condition to determine the source of electrical failure.
Battery voltage > 11 V No previous failure on the Oil Control solenoid actuator is present
Recurrence Rate: 100 ms
M/2
Recurrence Rate: 360° CKP
M/2
If any of the electrical failure is detected an errors flag is set after the failure counter max value is reached Failure counter > 16 (1.6s) If this error is set the following actions are taken: Cam phasing (V function) is set to limp home (function ive) Deactivation of “Hardware Based Diagnosis with the CJ120 Deactivate Generator L & F Terminal Monitor Disable knock Control Knock control adaptation (Circuit 1) Maximum end of Pre-injection angle is used & a calibratable constant for start of injection Disable fuel quality adaptation at start (start injection time adaptation) Disable downstream lambda trim control Disable Plausibility check of WARF Sensors Disable WARF Sensors diagnosis Heater Coupling Disable Diagnosis of the WRAF Sensor Dynamic Disable Monitoring Upstream Sensor Signal Disable Monitoring Upstream Sensor Signal during pull full cutoff (PUC) Disable downstream oxygen sensor diagnosis Disable dynamic fuel trim diagnosis Disable catalyst efficiency diagnosis
Exhaust Camshaft Position System
P0014 Bank 1
The goal of this diagnosis is to detect steady deviation of the camshaft position relative to
Actual Cam position > desired cam position (set point) + allowed tolerance for deviation
2004file8.doc
-
V State – enable (the cam phasing function is active – controller
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
Performance. Bank 1 & 2
FAULT CODE
MONITOR STRATEGY DESCRIPTION
P0024 Bank 2
the desired position (set point) by integrating the camshaft deviation at specific conditions. To ignore temporary deviations during the controller adjustment there is a tuneable cycle counter, That has to expire before the diagnosis is activated. If the controller adjustment and the PWM adaptation cycles have expired and a steady position of the camshaft is the result of the actual engine state, this camshaft deviation is integrated. If the integrated deviation reaches a max calibrated value the debounce errors counter is incremented. And If the integrator reach the value of the diagnosis initialization value the errors counter is decrement.
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
-
Actual camshaft position > desired position (set point) + 6 ° CKP
Actual Cam position < desired cam position (set point) + allowed tolerance for deviation Actual camshaft position < desired position (set point) +6 ° CKP The errors flag for intake camshaft is set after the failure counter max value is reached Failure counter > 16 1.6s) If this error is set the following actions are taken: Cam phasing (V function) is set to limp home (function ive) Deactivation of “Hardware Based Diagnosis with the CJ120 Deactivate Generator L & F Terminal Monitor Disable knock Control Knock control adaptation (Circuit 1) Maximum end of Pre-injection angle is used & a calibratable constant for start of injection Disable fuel quality adaptation at start (start injection time adaptation) Disable downstream lambda trim control Disable Plausibility check of WARF Sensors Disable WARF Sensors diagnosis Heater Coupling Disable Diagnosis of the WRAF Sensor Dynamic Disable Monitoring Upstream Sensor Signal Disable Monitoring Upstream Sensor Signal during pull full cutoff (PUC) Disable downstream oxygen
sensor diagnosis -
Disable dynamic
fuel trim diagnosis Disable catalyst efficiency diagnosis
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
is active & set points are calculated) -
Min engine speed for steady deviation < engine speed < Max engine speed for steady deviation Table base on oil temp < N RPM < Table based on oil temp
-
Min oil pressure for steady deviation < actual oil pressure < Max oil pressure for steady deviation 1 Bar < actual oil pressure < 7 bar
-
PWM adaptation cycle has expired
-
V is not in Limp Home (no failure on V electrical or mechanical)
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
Intake Cam /Crank Correlation Bank 1 & 2
FAULT CODE
P0016 Bank 1 P0018 Bank 2
MONITOR STRATEGY DESCRIPTION
The goal of this diagnosis is to detect if the actual CAM edge change lies in the permissible expected range. A hysteresis range is set around the expected CKP position in which the errors free CAM edge change is expected. If a Cam edge change does not occur in this CKP range then an errors is detected. This diagnosis is done on two reference edges (180° CKP apart) which are defined in the SW, ( the edges are correlated to the max opening of the intake camshaft lift curve/design edge) The design reference Cam position is also defined in the SW.
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Cam phasing (V function) is set to limp home (function ive) until the transition from engine run to engine stop is detected, even if the error is resolved. V State Ready (cam phasing function is in a ready state after all activation condition are fulfilled) or Adaptation (in this state the mechanical edges are learned relative to design edges) Actual camshaft position > deign camshaft position + Mechanical tolerance Actual camshaft position > 133° CKP + 12° CKP Actual camshaft position < deign camshaft position - Mechanical tolerance Actual camshaft position < 133° CKP – 12° CKP V State enable (the cam phasing function is active – controller is active & setpoints are calculated) Actual camshaft position > Deign reference camshaft position – Max adjustable phase range – tolerance for desired camshaft position (set point) around home position Actual camshaft position > 133° CKP – 40° CKP - 3° CKP Actual camshaft position < deign camshaft position + tolerance for desired camshaft position (set point) around home position Actual camshaft position > 133° CKP + 3° CKP The errors flag for Exhaust Cam /Crank Correlation is set after the Failure Counter Max Value is reached Failure counter > 16 (1.6s) If this error is set the following actions are taken:
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
-
Battery voltage ≥ 11 V V is not in Limp Home (no failure on V electrical or mechanical) The EOL/Service Tool request for V Mechanical check is ive
At ECM reset & transition from engine run to stop: The errors flag is cleared
TIME LENGTH AND FREQUENCY
Recurrence Rate: 100 ms
MIL TYPE & Trips
M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
-
Cam phasing (V function) is set to limp home (function ive) Deactivation of “Hardware Based Diagnosis with the CJ120 Deactivate Generator L & F Terminal Monitor Disable knock Control Knock control adaptation (Circuit 1) Maximum end of Pre-injection angle is used & a calibratable constant for start of injection Disable fuel quality adaptation at start (start injection time adaptation) Disable downstream lambda trim control Disable Plausibility check of WARF Sensors Disable WARF Sensors diagnosis Heater Coupling Disable Diagnosis of the WRAF Sensor Dynamic Disable Monitoring Upstream Sensor Signal Disable Monitoring Upstream Sensor Signal during pull full cutoff (PUC) Disable downstream oxygen
-
Disable dynamic
-
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
sensor diagnosis
-
Exhaust Cam /Crank Correlation Bank 1 & 2
P0017 Bank 1 P0019 Bank 2
The goal of this diagnosis is to detect if the actual CAM edge change lies in the permissible expected range. A hysteresis range is set around the expected CKP position in which the errors free CAM edge change is expected. If a Cam edge change does not occur in this CKP range then an errors is detected. This diagnosis is done on two
fuel trim diagnosis Disable catalyst efficiency diagnosis
Cam phasing (V function) is set to limp home (function ive) until the transition from engine run to engine stop is detected, even if the error is resolved V State Ready (cam phasing function is in a ready state after all activation condition are fulfilled) or Adaptation ((in this state the mechanical edges are learned relative to design edges) Actual camshaft position > deign camshaft position + Mechanical tolerance Actual camshaft position > -117° CKP + 12° CKP
2004file8.doc
The following conditions are fulfilled: -
Battery voltage ≥ 11 V V is not in Limp Home (no failure on V electrical or mechanical) The EOL/Service Tool request for V Mechanical check is ive
At ECM reset & transition from engine run to stop: The errors flag is cleared
Recurrence Rate: 100 ms
M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
reference edges (180° CKP apart) which are defined in the SW, ( the edges are correlated to the max opening of the intake camshaft lift curve/design edge) The design reference Cam position is also defined in the SW.
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Actual camshaft position < deign camshaft position - Mechanical tolerance Actual camshaft position < -117° CKP – 12° CKP V State enable (the cam phasing function is active – controller is active & setpoints are calculated) Actual camshaft position > Deign reference camshaft position + Max adjustable phase range + tolerance for desired camshaft position (set point) around home position Actual camshaft position > -117° CKP + 50° CKP + 3° CKP Actual camshaft position < deign camshaft position - tolerance for desired camshaft position (set point) around home position Actual camshaft position > -117° CKP – 3° CKP The errors flag for Exhaust Cam /Crank Correlation is set after the Failure Counter Max Value is reached Failure counter > 16 (1.6s) If this error is set the following actions are taken: Cam phasing (V function) is set to limp home (function ive) Deactivation of “Hardware Based Diagnosis with the CJ120 Deactivate Generator L & F Terminal Monitor Disable knock Control Knock control adaptation (Circuit 1) Maximum end of Pre-injection angle is used & a calibratable constant for start of injection Disable fuel quality adaptation at start (start injection time adaptation) Disable downstream lambda trim control Disable Plausibility check of WARF
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
-
Sensors Disable WARF Sensors diagnosis Heater Coupling Disable Diagnosis of the WRAF Sensor Dynamic Disable Monitoring Upstream Sensor Signal Disable Monitoring Upstream Sensor Signal during pull full cutoff (PUC) Disable downstream oxygen
-
Disable dynamic
-
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
sensor diagnosis
-
Intake Camshaft Position Actuator Solenoid Control Circuit Bank 2
P 2093 Short to Battery P 2092 Short to Ground P 0020 Open Circuit
The purpose is to diagnose electrical errors detected by the hardware on the actuator Solenoid circuit
fuel trim diagnosis Disable catalyst efficiency diagnosis
Cam phasing (V function) is set to limp home (function ive) until the transition from engine run to engine stop is detected, even if the error is resolved The drive self check the electrical condition to determine the source of electrical failure. If any of the electrical failure is detected an errors flag is set after the failure counter max value is reached Failure counter > 16 (1.6s) If this error is set the following actions are taken: Cam phasing (V function) is set to limp home (function ive) Deactivation of “Hardware Based Diagnosis with the CJ120 Deactivate Generator L & F Terminal Monitor Disable knock Control Knock control adaptation (Circuit 1) Maximum end of Pre-injection angle is used & a calibratable constant for start of injection Disable fuel quality adaptation at start (start injection time adaptation) Disable downstream lambda trim control
2004file8.doc
Battery voltage > 11 V No previous failure on the Oil Control solenoid actuator is present
Recurrence Rate: 100 ms
M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Exhaust Camshaft Position Actuator Solenoid Control Circuit Bank 1
P 2095 Short to Battery P 2094 Short to Ground P 0023 Open Circuit
The purpose is to diagnose electrical errors detected by the hardware on the actuator Solenoid circuit
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Disable Plausibility check of WARF Sensors Disable WARF Sensors diagnosis Heater Coupling Disable Diagnosis of the WRAF Sensor Dynamic Disable Monitoring Upstream Sensor Signal Disable Monitoring Upstream Sensor Signal during pull full cutoff (PUC) Disable downstream oxygen sensor diagnosis Disable dynamic fuel trim diagnosis Disable catalyst efficiency diagnosis
The drive self check the electrical condition to determine the source of electrical failure. If any of the electrical failure is detected an errors flag is set after the failure counter max value is reached Failure counter > 16 (1.6s) If this error is set the following actions are taken: Cam phasing (V function) is set to limp home (function ive) Deactivation of “Hardware Based Diagnosis with the CJ120 Deactivate Generator L & F Terminal Monitor Disable knock Control Knock control adaptation (Circuit 1) Maximum end of Pre-injection angle is used & a calibratable constant for start of injection Disable fuel quality adaptation at start (start injection time adaptation) Disable downstream lambda trim control Disable Plausibility check of WARF Sensors Disable WARF Sensors diagnosis Heater Coupling Disable Diagnosis of the WRAF Sensor Dynamic Disable Monitoring Upstream Sensor
2004file8.doc
Battery voltage > 11 V No previous failure on the Oil Control solenoid actuator is present
Recurrence Rate: 100 ms
M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Mass Air Flow (MAF) Sensor Performance
Mass Air Flow (MAF) Sensor Circuit
P0101
P0102 Low Frequency P0103 High Frequency
The load/TP rationality check can detect unplausibilities in the system, but only in combination with the output of the FSD (fuel system diagnosis) it is possible to identify the faulty sensor (load or throttle position) and to distinguish between a MAF sensor errors and a MAP sensor errors. Usually the reduced area and the pressure controller will be deactivated (and reset) if a plausibility errors occurs. This means, the IMM goes to pre-controlled and the only signal used is the throttle position. The purpose of the diagnosis shall be to detect electrical faults in the frequency sensor HFM, The diagnosis will be divided in two different cases, when the engine doesn’t run but the ignition key is ON (HFM-idle diagnosis) and when the motor is running (HFM diagnosis).
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Signal Disable Monitoring Upstream Sensor Signal during pull full cutoff (PUC) Disable downstream oxygen sensor diagnosis Disable dynamic fuel trim diagnosis Disable catalyst efficiency diagnosis
If the FSD detects an errors in the fuel path, this means that the TP signal is bad. If the FSD detects no errors this means, the unplausibility was caused from a faulty load sensor. Based on which sensor control is active the faulty load sensor could be disguised Load/TP rationality = 1 FSD errors = 0 Pressure ration (MAP/AMP) < 0.85 MAF sensor is faulty
Drive cycle has started The load/TP rationality check was complete No pervious faulty exists on the MAF performance
Recurrence Rate: 12.5 ms
Low frequency MAF Frequency for Diagnoses < 50 Hz Frequency is lower than 200 Hz
Engine not running ignition Key on Engine stopped
Recurrence Rate: 12.5 ms
Low frequency flag = 1 after debounce
Engine running ignition Key on Engine started Engine speed > 500 rpm
M/2
The MAF sensor performance errors flag is set after the errors counter reaches max value Failure counter > 16 (200ms)
Failure counter > 16 (200ms)
High Frequency MAF Frequency for Diagnoses > 12425 Hz Frequency is higher than 20000 kHz high frequency errors flag = 1 after debounce MAF Frequency for Diagnoses > 520 Kg/h MAF Frequency for Diagnoses < 1 Kg/h Sensor has exceed the diagnostic
2004file8.doc
M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
threshold the MAF errors flag is set if any of the condition is fulfilled Failure counter >16 (200ms)
Throttle Body Performance
P0068
MAF sensor control is not active (output signal is d) Map sensor control is activated (output signal is used by intake manifold model) Plausibility check throttle reduced area adaptation values
The load/TP plausibility check proofs the consistency between load and throttle position. The plausibility is checked by comparing the excitation of the controller (reduced area & pressure with the corresponding "basic" value (Throttle reduce area if area controlled, ambient pressure if pressure controlled). In addition, the throttle reduce area adaptation values are checked separately. This is necessary, because at closed throttle small absolute values (e.g. due to leakage air adaptation) may result in large relative values that pretend a bad system.
-
If the current load and throttle position signals are not consistent (implausible) a flag is set, that indicates problems in the plausibility check If the controller excitation (or area adaptation value) is above a calibratable threshold, The unplausibility detected only states, that the actual load and throttle position do not fit together and therefore a large controller excitation is required to bring them into line.
Plausibility check throttle reduced area controller excitation (In the plausibility check only the steady state conditions are of interest. Therefore, the controller excitations of the reduced area controller is smoothed with a low filter. This controller output is only calculated as long as the corresponding controller is active. If the plausibility check is deactivated the calculation of the moving mean value from the reduced area controller output is stopped (but not reset). Depending on several input variables the
(The additive and multiplicative adaptation values of the reduced area are checked separately. If one of them exceeds the corresponding threshold, a related errors flag is set, if the value is inside the thresholds the respective flag is reset. Because adaptation is done with a slow Recurrence Rate, no filtering of the adaptation values is required and they are directly used) -
Throttle reduced are controller additive < 15 cm ^2 Throttle reduced are controller additive > 15 cm ^2 Throttle reduced area controller factor < 35% Throttle reduced area controller factor > 35%
2004file8.doc
Drive cycle has started No errors currently exist on the throttle or load. Diagnoses in not disabled 600 RPM < engine speed < 6300 RPM 0.2 < pressure ration (MAP/ambient) < .95
Recurrence Rate: 25 ms
M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
If the fuel system diagnosis is available, it is possible to identify the reason of the unplausibility (i.e. errors in the load signal or throttle position) and to distingue between the different type of load errors (MAF or MAP). To get reasonable results from the FSD, a certain delay time is required before accessing the FSD results.
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
threshold for the controller excitation is selected. If e.g. the ECT-sensor goes bad, the threshold for plausibility errors detection can be chosen higher, so that more controller excitation is allowed. If the filtered reduced area controller excitation reaches a certain thresholds the plausibility check errors is set to active). -
Filtered reduced area controller < 35% filtered reduced area controller > 35%
Plausibility check pressure controller excitation ((In the plausibility check only the steady state conditions are of interest. Therefore, the controller excitations of the reduced area controller is smoothed with a low filter. This controller output is only calculated as long as the corresponding controller is active. If the plausibility check is deactivated the calculation of the moving mean value from the reduced area controller output is stopped (but not reset). Depending on several input variables the threshold for the controller excitation is selected. If e.g. the ECT-sensor goes bad, the threshold for plausibility errors detection can be chosen higher, so that more controller excitation is allowed. If the ratio of the filtered pressure controller excitation and the (adapted) ambient pressure reaches a certain threshold, the plausibility check errors is set to active. -
filtered pressure controller excitation < 225 hpa filtered pressure controller excitation > 225 hpa
if any of the above condition are fulfilled then the TP/Load plausibility errors flag is set after failure counter max value is reached Failure counter > 16 (400ms)
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
Throttle Body Performance
FAULT CODE
P0068
MONITOR STRATEGY DESCRIPTION
The load/TP rationality check can detect unplausibilities in the system, but only in combination with the output of the FSD (fuel system diagnosis) it is possible to identify the faulty sensor (load or throttle position) and to distinguish between a MAF sensor errors and a MAP sensor errors. Usually the reduced area and the pressure controller will be deactivated (and reset) if a plausibility errors occurs. This means, the IMM goes to precontrolled and the only signal used is the throttle position.
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
If this diagnostic is present the following are disabled The intake model adaptive & excitation are rested and the model is calculating the load in pre-control (open loop no close eedback signal is used from the sensors). Only the throttle signal is used. If the FSD detects an errors in the fuel path, this means that the TP signal is bad. If the FSD detects no errors this means, the unplausibility was caused from a faulty load sensor.
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Drive cycle has started The load/TP rationality check was complete No pervious faulty exists on the throttle body performance
Recurrence Rate: 25 ms
M/2
Drive cycle has started The load/TP rationality check was complete No pervious faulty exists on the MAP performance
Recurrence Rate: 25 ms
M/2
Ignition key on Engine stopped Engine running and steady throttle
Recurrence Rate; 25ms
Load/TP rationality = 1 FSD errors = 1 Throttle is faulty The throttle body performance errors flag is set after the errors counter reaches max value Failure counter > 16 (400ms)
Manifold Absolute Pressure (MAP) Sensor Performance
Manifold Absolute Pressure (MAP) Sensor Circuit
P0106
P0107 Low Voltage P0108 High Voltage
The load/TP rationality check can detect unplausibilities in the system, but only in combination with the output of the FSD (fuel system diagnosis) it is possible to identify the faulty sensor (load or throttle position) and to distinguish between a MAF sensor errors and a MAP sensor errors. Usually the reduced area and the pressure controller will be deactivated (and reset) if a plausibility errors occurs. This means, the IMM goes to pre-controlled and the only signal used is the throttle position. The purpose is to diagnose the mean value of the anaput signal (V_MAP) from MAP sensor to the micro-controller.
If the FSD detects an errors in the fuel path, this means that the TP signal is bad. If the FSD detects no errors this means, the unplausibility was caused from a faulty load sensor. Based on which sensor control is active the faulty load sensor could be disguised Load/TP rationality = 1 FSD errors = 0 Pressure ration (MAP/AMP) > 0.85 MAP sensor is faulty The MAP sensor performance errors flag is set after the errors counter reaches max value Failure counter >16 (400ms) High voltage MAP Volts > 4.9V Short to battery or open circuit errors detected Low voltage
2004file8.doc
M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
MAP Volts < .08V Short to ground errors detected Failure counter > 16 (400ms) The MAP DTC is set if the failure conditions are fulfilled.
Manifold Absolute Pressure (MAP) Sensor Circuit Intermittent
P1106 Intermittent high
The purpose is to diagnose the mean value of the anaput signal (V_MAP) from MAP sensor to the ECM.
P1107 Intermittent Low
High filter of V_MAP > 4.9V
Ignition key on Engine stopped Engine running and steady throttle
Recurrence Rate; 25ms
n/1
Ignition Key on
Recurrence Rate: 100 msec
M/2
Evaluation of sign (MAPn – MAPn-1) errors is set High intermittent errors detected Evaluation of sign (MAPn – MAPn-1) errors not set
Low intermittent errors is detected Low filter of V_MAP < .11V The MAP errors flag is set if any of the condition is fulfilled after debounce Failure counter > 16 (400ms)
Intake Air temperature (IAT) Sensor Circuit
P0112 Low Voltage P0113 High Voltage
The purpose is to diagnose the anaput signal (V_TIA) from induction air temperature Low or high voltage errors
MAP sensor control is d (output signal is d) MAF sensor control is activated (output signal is used by intake manifold model) Low Voltage Time after start > 120s IAT Voltage < .04V Short to ground (low voltage detected) High voltage Time after start > 120s IAT Voltage > 4.9V Short to battery or line break (high voltage detected) If any of the condition if fulfilled the IAT errors flag is set after failure counter max value is reached Failure counter > .1s
2004file8.doc
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
Intake Air temperature (IAT) Sensor Circuit Intermittent
Engine Coolant Sensor Performance
Engine Coolant Temperature Sensor Electrical Diagnosis (ECT)
Engine Coolant Temperature
FAULT CODE
P1111 Intermittent high P1112 Intermittent low P0116
P 0117 P 0118
P 0125
MONITOR STRATEGY DESCRIPTION
The purpose is to diagnose In case of intermittent failure detected on IAT sensor, a specific ABC counter is managed. Target is to avoid sudden calculation transition in any function based on IAT temperature This Diagnostic Detects a Stuck ECT sensor signal. An ECT model is used to determine the expected rate of change in the ECT sensor. Once a calibratable delta between ECT model minimum value and ECT model maximum value is reached the decision portion of the diagnostic is entered. If the delta between ECT minimum value and ECT maximum value is less than a calibratable table value the sensor is concidered stuck.
This Diagnosis is to detect an Electrical malfunction, Short circuit to VB, SCG, OL.
Detects if ECT has reached sufficient temperature to allow
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Load/TP Rationality threshold will be extended ABS (Actual air temperature for segment n – filtered air temperature for segment n) > IAT High Intermittent ABS (IAT n – IAT Filtered n) > 4.9V IAT Low Intermittent < .04V IAT intermittent errors flag is set after debounce Failure counter >.1s ECT change on this drive cycle < 1.5° C
If this error is detected then the ECT model temp is used. The error will latch for this drive cycle (until power latch occurs).
• • •
ECT Volts < .06V Failure Ctr. > .1s P 0117 = Active (SCG)
• • • • •
ECT Volts > 4.9V Inlet Air Temp. ≥ -7°C Eng Run Time ≥ 120s Failure Ctr. > .1s P 0118 = Active
ECT < Table used for Lamda Sensor Closed Loop operation
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Ignition Key on
Recurrence Rate: 100 msec
N/1
Disable conditions: • ECT fault • IAT fault • MAF fault • EMOP active Enable conditions: • Engine running • ECT model temp change on this drive cycle > 100°C if start temp= minus 40°C,through 20°C if start temp= 70°C at (table based on ECT at start) • The diagnostic will not fail if start temp > 70°C (temp gage value is supplied by ECT sensor by ECM via communication bus) ***Please confirm true for all carlines.
Recurrence Rate 1 sec (Currently completes before th end of 18 cycle of -7° C FTP. Validation of calibration is NOT complete)
M\2
Recurrence Rate: 100 ms
M/2
Recurrence Rate: 1s
M\2
• • •
Short circuit to ground Diagnosis IGN = ON EMOP = Not Active •
•
Short circuit to VB or OL Diagnosis IGN = ON • EMOP = Not Active
Disable conditions: • Inlet air temp < -8.25c
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
(ECT) Insufficient for Closed Loop Fuel Control
Engine Coolant Temperature (ECT) Below Thermostat Regulating Temperature
Engine Coolant Sensor Signal Voltage
Throttle Position Sensor # 1 Electrical Diagnosis (TP)
MONITOR STRATEGY DESCRIPTION
closed loop fuel using an ECT model vs. measured ECT. If this error is detected then the ECT model temp is used. The error will latch for this drive cycle (until power latch occurs).
P 0128
P 1114 P 1115
(TP 1) Low Volts P 0122
Detects a stuck open thermostat, using an ECT model vs. measured ECT.
This diagnostic will detect an intermittent short to ground or intermittent short to battery voltage / open
This Diagnosis is to detect an Electrical malfunction, Short circuit to VB, SCG, OL.
(TP 2) High Volts P 0123 Throttle Position Sensor # 1 Electrical Diagnosis (TP)
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
(TP 2) Low Volts P 0222 (TP 2) High Volts P 0223
The potentiometer voltage for channel 2 must be within the issible limits. This DTC can distinguish the circuit’s low & High Voltage.
SECONDARY PARAMETERS AND ENABLE CONDITIONS
• Inlet air temp sensor fault • ECT fault • MAF sensor fault • MAF/TP sensor plausibility fault Enable conditions: • Engine running time > 30s AND • open loop time > 120s • idle time < 50& • fuel cut off time < 50%
ECT has not been greater than 72°C for 10 seconds OR ECT < 62 c for catylyst diagnostic enable temperature OR ECT < 62c for lamda sensor diagnostic enable temperature
Disable conditions: • ECT fault • Time to close loop fault • MAF sensor fault • MAF/TP sensor plausibility fault • ECT @ start < -8.25° C • ECT @ start > 50° C Enable conditions: • ECT model > 90° C • idle time < 95% • fuel cutoff time < 50%
• • •
ECT Volts < .04V Failure Ctr. > .1s P 1114 = Active (INT SCG)
• • •
• • • • •
ECT Volts > 4.9V Inlet Air Temp. ≥ -7°C Eng Run Time ≥ 120s Failure Ctr. > .1s P 1115 = Active TP Volts < .098 Failure Ctr. = 12 (60ms) P 0122 = Active ( SCG) TP Volts > 4.89 Failure Ctr. = 12 (60ms) P 0123 = Active ( SCVB / OL)
TP Volts < 0.4643 V Failure counter max = 12 (60ms) P222 = Active Limp home – RPM limitation TP Volts > 4.8436 V Failure counter max = 12 (60ms) P223 = Active Limp home – RPM limitation
2004file8.doc
INT Short circuit to ground Diagnosis IGN = ON EMOP = Not Active
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Currently the normal time to closed loop is 15 seconds. Closed loop is forced after 120 seconds.
Recurrence Rate: 1s Run time varies with the ECT at start.
M\2
Completes before th end of 18 cycle of -7° C FTP.) Recurrence Rate: 100mS
N/1
5 ms
M\1
5 ms
M\1
•
•
INT Short circuit to VB or OL Diagnosis IGN = ON • EMOP = Not Active
Activation: IGN =1. The error bits, Failure-counters and other variables or bits are initialised Deactivation: IGN =0 or the setting conditions are not fulfilled anymore TP DTC already set Limp home active Activation: IGN =1. The error bits, Failure-counters and other variables or bits are initialised Deactivation: IGN =0 or the setting conditions are not fulfilled anymore TP DTC already set Limp home active
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Wide Range Air Fuel Sensor # 1 Electrical Diagnosis (B1S1)
SCG P 0131
This Diagnostic is intended to detect a SCG, SCVB, or Open in the signal line or in the WRAF sensor. The Electrical Diagnosis is performed internally through the ECM (BSW) by the CJ120 .
If the CJ120 detects an Open signal, SCG, or SCVB.
HO2S Slow Response Bank 1 & 2 Sensor 1
SCVB P 0132 Open Line P 0134 (Bank 1) P0133 (Bank 2) P0153
This diagnosis observes the amplitude of the Lambda sensor in response to forced lambda stimulation. The sensor value is compared to a Lambda sensor model and a filtered ratio is generated. This value is filtered by a gain table that is used to standardize the amplitude portion with respect to engine speed and load. The integral of all cycles during the test is the compared to a single threshold to determine the response of the sensor signal. By observing the amplitude of the sensor signal during a given forced stimulation period, the
response time of the sensor can be determined. A sensor with slow response time will not achieve the modeled amplitude during a forced stimulation period.
AND Failure Counter > 100 (500 ms) (inc @ 2) Related P-Codes = Active 1.) A dynamic parameter of the sensor is calculated by dividing the period of the lambda air/fuel ratio switching characteristic by a multiplication of the amplitude of the lambda by the difference between the lambda set point that includes the period, amplitude and the basic lambda set-point 2.) The value of this dynamic parameter is multiplied by a gain value that is used to standardize the amplitude portion with respect to engine speed and load and added to an integrated value of the dynamic parameter. 3.) This function is equipped with a counter that counts the number of single calculations. Once the minimum number of calculations 15 cyc. is exceeded another calculation is made. This calculation divides the integrated dynamic sensor parameter value by the counter value. This calculation gives the characteristic value of the sensor dynamics. The characteristic value of the sensor dynamic is then compared to the limited diagnosis value for error diagnosis. If Sensor Dynamic Total < .2
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
This diagnostic is inhibited if any of the following DTC’s are present: HO2S Enable Conditions IGN = ON Diagnosis = Active
Recurrence Rate: 10 ms
M/2
Enable conditions
Recurrence Rate: 10 ms
M\2
• • • • • •
HO2S Ready (Lambda Sensor Closed Loop) Lambda forced stimulation active Baro ≥ 740hPa Rpm > 1216 < 3104 MAF > 170 < 400mgstk Catalyst diagnosis active. Catalyst diagnostic generates the forced stimulation used to diagnose the Catalyst OSC and HO2S Response Time simultaneously.
This diagnostic is inhibited if any of the following DTC’s are present: CKP Sensors CMP Sensors MAF Sensors MAP Sensors Injectors DTC’s Ignition Coil DTC’s HO2S DTC’s Limp home Safety (ETC) EVAP / S DTC’s TP DTC’s ECT DTC’s Misfire DTC’s
During low engine speed and load conditions a longer forced stimulation period is required to assure correct diagnosis. The longest period used is 1.24 seconds. This value is multiplied by 15 cycles to determine the worst case test time. The result is 18.6 seconds. Under most operating conditions the test will complete in one continuos test. However, if the test is interrupted, test results for previous cycles are stored. This means the 15 cycles do not have to be consecutive in order to complete the diagnostic. They must all be within the same key cycle.
P0133 = Active P0153 = Active HO2S Heater Electrical Circuit Bank 1 Sensor 1
P 0030 OC P 0031 SCG P 0032 SCB
The purpose of the diagnostic is intended to detect electrical faults within the oxygen sensor
If: SCB Diagnosis = Enabled PWM signal ≥ 99%
2004file8.doc
Enable Conditions: IGN = ON, Eng = ON
Recurrence rate 1s
M\2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
HO2S Heater Electrical Circuit Bank 2 Sensor 1
P0050 OC P0051 SCG P0052 SCB
HO2S Heater Electrical Circuit Bank 1 Sensor 2
P 0036 OC P 0037 SCG P 0038 SCB
H02S Heater Electrical Circuit Bank 2 Sensor 2
P0056 OC P0057 SCG P0058 SCB
HO2S Heater Performance Bank 1 and 2 Sensor 1
(Bank 1) P 0135 (Bank 2) P 0155
MONITOR STRATEGY DESCRIPTION
Heater Circuit. This diagnostic takes into consideration the following electrical faults based the heater drivers ATM3x. Short to B+ by Overtemperature or Overcurrent. Short to ground and Open-line. The heater driver is capable of detecting OL and SCB when in the “ON” State and will detect the SCG only when in the “OFF” state. The heater power is controlled by a PWM signal, the driver will be placed alternately in an “ON” and then “OFF” state. The purpose of the diagnostic is intended to detect electrical faults within the oxygen sensor Heater Circuit. This diagnostic takes into consideration the following electrical faults based the heater drivers. Short to B+, Short to ground and Open-line. The heater driver is capable of detecting OL and SCB when in the “ON” State and will detect the SCG only when in the “OFF” state. The heater power is controlled by a PWM signal, the driver will be placed alternately in an “ON” and then “OFF” state. This function will diagnose an upstream oxygen sensor heater failure that would lead to an increase in emissions beyond the legal thresholds. The diagnosis shall be carried out by determining whether the operative readiness of the sensor exceeds a time threshold or whether the measured oxygen sensor ceramic temperature exceeds or falls below set bounds over a number of measurement cycles. The temperature of the
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Diagnostic = Active Or if: Exhaust temp. ≥ 400°C Diagnostic = Active If: SCG Diagnosis = Enabled PWM signal ≤ .39% Diagnostic = Active If: OL Diagnosis = Enabled PWM signal ≥ .39%
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Recurrence rate 1s
M\2
Recurrence rate 1s
M\2
Batt volts > 11 < 16 Diagnostic = Enabled This diagnostic is inhibited if any of the following DTC’s are present: VB DTC’s
Diagnostic = Active
If: SCB Diagnostic Flag = Enabled Heater state ≠ Preheating Diagnostic = Active Or: Cat Temp ≥ 400 C Diagnostic = Active If: SCG Diagnostic Flag = Enabled Diagnostic = Active If: OL Diagnostic Flag = Enabled Diagnostic = Active
After the enable criteria are met the sensor is observed for readiness. If the sensor is not ready a timer is started. If this timer exceeds 20 seconds an exaggerated stimulation is performed to try to force the sensor to ready state. If the sensor is still not active after 25 seconds of exaggerated stimulation an error is set. If the sensor is ready previous to the timer exceeding the 20 seconds another test is performed. The test will wait 60 seconds from the time the engine was started. At this point the sensor temperature is observed once per second (resistance = temp) for 32 seconds. If the sensor
2004file8.doc
Enable Conditions: IGN = ON, Eng = ON Batt volts > 11 < 16 Diagnostic = Enabled This diagnostic is inhibited if any of the following DTC’s are present: VB DTC’s
Enable Conditions: Engine = ON Heater State not OFF or in Protection Batt Voltage > 11 < 16v Heater PWM > 25% This diagnostic is inhibited if any of the following DTC’s are present: WRAF DTC’s
sensor
internal
resistance
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
sensor is determined by measuring the internal resistance of the sensor.
temperature is less than 600C or greater than 900C a fail counter is incremented. After the 32 seconds has elapsed the fail counter is observed. If the fail counter exceeds 28 an error is set. P0135 = Active P0155 = Active
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Recurrence rate 100 ms
M/2
Recurrence Rate: 100ms
M/2
Recurrence Rate 20 ms
M\2
WRAF sensor heater electrical DTC’s WRAF sensor signal electrical DTC’s VB DTC’s MAF DTC’s Load-TP diagnosis DTC’s WRAF sensor Plausibility DTC’s
Heated Oxygen Sensor (HO2S) Low Voltage Bank 1 & 2 Sensor 2
(Bank 1) P0137
This Diagnostic detects a SCG in the circuit or the Oxygen Sensor
(Bank 2) P0157
HO2S Down Volts < 2mV HO2S Down Resistance < 10 Ohms Timer 2 > 5 Sec. ( Failure Window ) Failure Counter > 16 (1.6 sec.) P0137 = Active P0157 = Active
Heated Oxygen Sensor (HO2S) High Voltage Bank 1& 2 Sensor 2
(Bank 1) P0138
HO2S Slow Response Bank 1 & 2 Sensor 2
(Bank 1) P0139
This Diagnostic detects a SCVB in the circuit or the Oxygen Sensor
(Bank2) P0158
(Bank 2) P0159
HO2S Down Volts > 2 volts Failure Counter > 16 (1.6 sec.) P0138 = Active P0158 = Active
This diagnosis can detect the sluggish behavior of the rich/lean switch times during the transition to the trailing fuel cut-off. The results are statistically treated. The allowable sensor behavior is based on the sensors signal under different MAF and signal band limits. Non-Intrusive Monitoring
This diagnostic is inhibited if any of the following DTC’s are present: HO2S Circuit Faults Enable Conditions IGN = ON Dynamic Fuel Trim = Active MAF > 100Kg/h Timer 1 > 25.5 Sec. ( Stabilization ) Diagnostic = Active
This diagnostic is inhibited if any of the following DTC’s are present: HO2S Circuit Faults Enable Conditions IGN = ON Diagnostic = Active
After the enable conditions are met and PUC is determined to be active, the current downstream O2 voltage is monitored and stored. If the stored value is above 600mV and MAF > 10 < 200 Kg/h the test is started. Once the sensor voltage drops 15% of the stored value a timer is started. This timer is then stopped when the voltage drops 70% of the stored value. At this point the test is determined to be valid and the diagnostic counter is incremented by one. The switching time value is then converted to a weighted value. This process is repeated for 5 PUC events. Each time the diagnostic counter is incremented the weighted value is added to a
2004file8.doc
All monitoring conditions must be met No inhibition reason for diagnosis Coolant Temp > 70 C Downstream Sensors = Ready Vehicle Speed > 5 < 180 Km/h Cat temp > 450 C This diagnostic is inhibited if any of the following DTC’s are present: Throttle position sensor errors Canister purge solenoid errors Canister purge solenoid mechanical errors Coolant temperature sensor errors Coolant temperature signal stuck errors
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
total value. At the end of the 5 PUC events the total value is divided by the number of PUC events and another value is developed. This value is then compared to a threshold. If the value exceeds the threshold the sensor is determine to be slow. If Total Response Time > 1.002 P0139 = Active P0159 = Active
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Recurrence Rate 100 ms:
M/2
Recurrence Rate: 10 ms
M/2
Coolant temperature signal gradient errors Coolant temp. sensor plausibility errors Manifold pressure sensor errors Crankshaft sensor errors Camshaft sensor errors Injection valve errors Fuel system diagnosis errors Vehicle speed sensor errors O2 sensor up output stage OBD1 errors O2 sensor heater up OBD1 output stage errors O2 sensor heater up OBD2 errors O2 sensor down OBD1 output stage errors O2 sensor heater down OBD1 output stage errors O2 sensor down OBD2 switching time errors, in case of a Switching errors in the last driving cycle, this condition is faded out O2 sensor heater down OBD2 errors misfire carb A errors misfire carb B errors OBD II downstream oxygen sensor diagnosis enabled If any one of the above errors is active then the diagnosis of the monitoring sensors for will be inhibited.
Heated Oxygen Sensor (HO2S) insufficient Activity B1S2
Wide Range Air Fuel Sensor # 1
(Bank 1) P0140
This Diagnostic detects an Open Signal in the Oxygen Sensor or the circuit
(Bank 2) P0160
SCG P 0151
This Diagnostic is intended to detect a SCG, SCVB, or Open
HO2S Down Volts < 522mV HO2S Down Volts > 356mV Time ≥ 5 Sec HO2S Down Resistance > 60000 Ohms Failure Counter > 16 (1.6 sec.)
This diagnostic is inhibited if any of the following DTC’s are present: HO2S Circuit Faults
P0140 = Active P0160 = Active
Enable Conditions IGN = ON Catalyst Temp. > 650C HO2S Down = Ready Heater State = Heating Diagnostic = Active
If the CJ120 detects an Open signal, SCG, or SCVB.
This diagnostic is inhibited if any of the following DTC’s are present:
2004file8.doc
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
Electrical Diagnosis (B2S1)
HO2S Heater Performance Bank 1 and 2 Sensor 2
Fuel System Lean Bank 1
FAULT CODE
SCVB P 0152 Open Line P 0154 (Bank 1) P 0141 (Bank 2) P 0161
P 0171
MONITOR STRATEGY DESCRIPTION
in the signal line or in the WRAF sensor. The Electrical Diagnosis is performed internally through the ECM (BSW) by the CJ120 . The diagnosis strategy compares the WRAF sensor heater internal resistance to a threshold during conditions when the exhaust gas temperature is low enough to cause the sensor ceramic temperature to fall outside normal operating levels if a failure is present. From the internal resistance of the sensor the temperature of the sensor can be calculated.
Fuel System correction is monitored to determine if the system is too lean Non-Intrusive Monitoring
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
AND Failure Counter > 100 (500 ms) (inc @ 2) Related P-Codes = Active After the enable criteria are met a timer is started. When this timer exceeds 240 seconds the modeled exhaust temperature is compared to a threshold of 650C. If the temperature exceeds the threshold the sensor resistance is observed once per second for 60 seconds. If the sensor resistance is greater than 1100 ohms a fail counter is incremented. After the 60 seconds has elapsed the fail counter is observed. If the fail counter exceeds 40, an error is set.
If the output for the lambda controller + the fuel adapts is greater than the emissions failure threshold for fuel system diagnosis during 100 seconds of a 300 second test period. (Test period timer is only incremented if enable conditions are met) If Short Term + Long Term Fueling > 25% FOR TIME > 100 SEC. P 0171 = Active
SECONDARY PARAMETERS AND ENABLE CONDITIONS
MIL TYPE & Trips
Recurrence rate 1s
M\2
Recurrence Rate 20 ms
M\2
HO2S Enable Conditions IGN = ON Diagnosis = Active Enable Conditions: Engine = ON Heater = Heating Batt Voltage > 11 < 16V Heater PWM > 0 < 99.6% This diagnostic is inhibited if any of the following DTC’s are present:
• • • • •
MAF DTC’s VB DTC’s Load-TP diagnosis DTC’s WRAF sensor electrical DTC’s WRAF sensor heater electrical DTC’s
Enable Conditions: • Closed Loop Active • Application conditions fulfilled • Fuel system diagnosis errors not detected during this trip. • No inhibition due to high charcoal canister saturation. The canister purge system cycles closed for 60 seconds after 240 seconds of purge under all circumstances. Once canister purge has cycled off, there is no canister load and thus no canister inhibition due to saturation. • Rpm > 500 • MAF > 60mgstk • Coolant Temp > 70°C • Baro > 740hPa • Intake Air Temp > -7°C If any one of the above conditions are not met then the diagnostic function will not
2004file8.doc
TIME LENGTH AND FREQUENCY
Worst case to detect a fuel system fault is when the charcoal canister is saturated. This could require a worst case time of 580 seconds after ECT enable temperature is met. (Two 240 second purge cycles plus 100 seconds of purge off time.)
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Recurrence Rate 20 ms
M\2
activate This diagnostic is inhibited if any of the following DTC’s are present: TP errors ECT errors IAT errors MAF errors Camshaft sensor errors Misfire Present Canister purge errors Crank shaft sensor errors Fuel system diagnosis inhibited
Fuel System Rich Bank 1
P 0172
Fuel System correction is monitored to determine if the system is too rich Non-Intrusive Monitoring
If the output for the lambda controller + the fuel adapts is greater than the emissions failure threshold for fuel system diagnosis during 100 seconds of a 300 second test period. (Test period timer is only incremented if enable conditions are met) If Short Term + Long Term Fueling < -25% FOR TIME > 100 SEC. P 0172 = Active
Enable Conditions: • Closed Loop Active • Application conditions fulfilled • Fuel system diagnosis errors not detected during this trip. • No inhibition due to high charcoal canister saturation. The canister purge system cycles closed for 60 seconds after 240 seconds of purge under all circumstances. Once canister purge has cycled off, there is no canister load and thus no canister inhibition due to saturation. • Rpm > 500 • MAF > 60mgstk • Coolant Temp > 70°C • Baro > 740hPa • Intake Air Temp > -7°C If any one of the above conditions are not met then the diagnostic function will not activate This diagnostic is inhibited if any of the following DTC’s are present: TP errors ECT errors IAT errors MAF errors Camshaft sensor errors
2004file8.doc
Worst case to detect a fuel system fault is when the charcoal canister is saturated. This could require a worst case time of 580 seconds after ECT enable temperature is met. (Two 240 second purge cycles plus 100 seconds of purge off time.)
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Enable Conditions: • Closed Loop Active • Application conditions fulfilled • Fuel system diagnosis errors not detected during this trip. • No inhibition due to high charcoal canister saturation. The canister purge system cycles closed for 60 seconds after 240 seconds of purge under all circumstances. Once canister purge has cycled off, there is no canister load and thus no canister inhibition due to saturation. • Rpm > 500 • MAF > 60mgstk • Coolant Temp > 70°C • Baro > 740hPa • Intake Air Temp > -7°C If any one of the above conditions are not met then the diagnostic function will not activate This diagnostic is inhibited if any of the following DTC’s are present: TP errors ECT errors IAT errors MAF errors Camshaft sensor errors Misfire Present Canister purge errors Crank shaft sensor errors Fuel system diagnosis inhibited
Recurrence Rate 20 ms
M\2
Enable Conditions: • Closed Loop Active • Application conditions fulfilled • Fuel system diagnosis errors not detected during this trip.
Recurrence Rate 20 ms
M\2
Misfire Present Canister purge errors Crank shaft sensor errors Fuel system diagnosis inhibited
Fuel System Lean Bank 2
P 0174
This diagnostic condition is used to observe the output of linear lambda control to determine if the system is too lean
If the output for the lambda controller + the fuel adapts is greater than the emissions failure threshold for fuel system diagnosis during 100 seconds of a 300 second test period. (Test period timer is only incremented if enable conditions are met)
Non-Intrusive Monitoring If Short Term + Long Term Fueling > 25% FOR TIME > 100 SEC. P 0174 = Active
Fuel System Rich Bank 2
P 0175
This diagnostic condition is used to observe the output of linear lambda control to determine if the system is too rich
If the output for the lambda controller + the fuel adapts is greater than the emissions failure threshold for fuel system diagnosis during 100 seconds of a 300 second test period. (Test period timer is only incremented if enable conditions are met)
2004file8.doc
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
•
Non-Intrusive Monitoring If Short Term + Long Term Fueling < -25% FOR TIME > 100 SEC. P 0175 = Active
• • • • •
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
100ms The diagnostic shall activate at every sensor acquisition.
M/2
No inhibition due to high charcoal canister saturation. The canister purge system cycles closed for 60 seconds after 240 seconds of purge under all circumstances. Once canister purge has cycled off, there is no canister load and thus no canister inhibition due to saturation. Rpm > 500 MAF > 60mgstk Coolant Temp > 70°C Baro > 740hPa Intake Air Temp > -7°C
If any one of the above conditions are not met then the diagnostic function will not activate This diagnostic is inhibited if any of the following DTC’s are present: TP errors ECT errors IAT errors MAF errors Camshaft sensor errors Misfire Present Canister purge errors Crank shaft sensor errors Fuel system diagnosis inhibited HO2S Circuit Low Voltage During Power Enrichment Bank 1 & 2 Sensor 2
(Bank 1) P1137 (Bank 2) P1157
The purpose is to diagnose a downstream oxygen sensor that will not exceed a high voltage threshold during full load enrichment.
Downstream oxygen sensor voltage < 700mV during full load fuel enrichment. AND Failure Counter > 16 (1.6 sec) P1137 = Active P1157 = Active
Activation Conditions • Cat temp > 650C • Downstream sensor is ready and heating • Full load is present for a specified time done with a MAF integral window (100 – 300 grams) This diagnostic is inhibited if any of the following DTC’s are present: • Downstream O2 heater errors • Downstream O2 Sensor errors • Injector errors • Canister purge solenoid errors • MAF errors • TP errors • Misfire errors
2004file8.doc
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
HO2S Circuit High Voltage During Decel Fuel Cut-Off (DFCO) Bank 1 & 2 Sensor 2
FAULT CODE
MONITOR STRATEGY DESCRIPTION
(Bank 1) P1138
The purpose is to diagnose a downstream oxygen sensor that will not exceed a low voltage threshold during fuel cut-off.
(Bank 2) P1158
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Downstream oxygen sensor voltage > 30mV during decel fuel cut-off. AND Failure Counter > 50 (1 sec) (inc. @ 5) P1138 = Active P1158 = Active
Post Catalyst Fuel Trim Lean condition Bank 1 and 2
P2096 P2098
Fuel Correction Diagnostic, Portion #1
Fuel correction is used to compensate the fuel system rich or lean condition. This diagnostic has two functions.
If the trim controller has exceeded its ability to keep the downstream sensor in a desired range for 22 seconds out of a 25 second test period.
1. The purpose is to diagnose an excess upstream sensor delay from the trim controller.
Fuel Trim Correction < -2.93% FOR TIME > 22 SEC.
2. The purpose is to diagnosis excess deviation of the downstream sensor voltage as compared to the set-point of the trim controller.
P2096 = Active P2098 = Active
If portion 1 or 2 has failed the other portion will be disabled.
Post Catalyst Fuel Trim Lean condition Bank 1 and 2 Fuel Correction Diagnostic, Portion #2
P2096 P2098
Fuel correction is used to compensate the fuel system rich or lean condition. This diagnostic has two functions. 1. The purpose is to diagnose an excess upstream sensor delay from the trim controller.
Downstream sensor voltage deviation from trim controller set-point: If Downstream O2 voltage is > 151 mV or < 498 mV from set-point for 70 seconds of a 75 second test period. P2096 = Active P2098 = Active
2. The purpose is to diagnosis excess deviation of the d t lt
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Activation Conditions • Cat temp > 650C • Downstream sensor is ready and heating • Decel Fuel Cut-off is present for a specified time done with a MAF integral window (35 - 120 grams) This diagnostic is inhibited if any of the following DTC’s are present: • Downstream O2 heater errors • Downstream O2 Sensor errors • Injector errors • Canister purge solenoid errors • MAF errors • TP errors • Misfire errors Activation Conditions • Dynamic trim is active for more than 10 seconds • Canister purge is steady state
100ms The diagnostic shall activate at every sensor acquisition.
M/2
1 sec
M/2
1 sec
M/2
This diagnostic is inhibited if any of the following DTC’s are present: • Canister purge solenoid errors • ECT errors • MAF errors • MAP errors • Crankshaft sensor errors • Camshaft sensor errors • Fuel System errors • WRAF Sensor errors • WRAF Sensor HTR errors • Oxygen Sensor errors • Oxygen sensor heater errors • Misfire errors Activation Conditions • Dynamic trim is active for more than 10 seconds • Canister purge is steady state This diagnostic is inhibited if any of the following DTC’s are present: • Canister purge solenoid errors • ECT errors • MAF errors • MAP errors
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
downstream sensor voltage as compared to the set-point of the trim controller. If portion 1 or 2 has failed the other portion will be disabled.
Post Catalyst Fuel Trim Rich condition Bank 1 and 2
P2097 P2099
Fuel Correction Diagnostic, Portion #1
Fuel correction is used to compensate the fuel system rich or lean condition. This diagnostic has two functions.
If the trim controller has exceeded its ability to keep the downstream sensor in a desired range for 22 seconds out of a 25 second test period.
1. The purpose is to diagnose an excess upstream sensor delay from the trim controller.
Fuel trim correction > 2.93% FOR TIME > 22 SEC.
2. The purpose is to diagnosis excess deviation of the downstream sensor voltage as compared to the set-point of the trim controller.
P2097 = Active P2099 = Active
If portion 1 or 2 has failed the other portion will be disabled . Post Catalyst Fuel Trim Rich condition Bank 1 and 2 Fuel Correction Diagnostic, Portion #2
P2097 P2099
Fuel correction is used to compensate the fuel system rich or lean condition. This diagnostic has two functions. 1. The purpose is to diagnose an excess upstream sensor delay from the trim controller.
Downstream sensor voltage deviation from trim controller set-point: If Downstream O2 voltage is > 151 mV or < 498 mV from set-point for 70 seconds of a 75 second test period. P2097 = Active P2099 = Active
2. The purpose is to diagnosis excess deviation of the downstream sensor voltage as compared to the set-point of the trim controller. If portion 1 or 2 has failed the other portion will be disabled
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
• Crankshaft sensor errors • Camshaft sensor errors • Fuel System errors • WRAF Sensor errors • WRAF Sensor HTR errors • Oxygen Sensor errors • Oxygen sensor heater errors • Misfire errors Activation Conditions • Dynamic trim is active for more than 10 seconds • Canister purge is steady state This diagnostic is inhibited if any of the following DTC’s are present: • Canister purge solenoid errors • ECT errors • MAF errors • MAP errors • Crankshaft sensor errors • Camshaft sensor errors • Fuel System errors • WRAF Sensor errors • WRAF Sensor HTR errors • Oxygen Sensor errors • Oxygen sensor heater errors • Misfire errors Activation Conditions • Dynamic trim is active for more than 10 seconds • Canister purge is steady state This diagnostic is inhibited if any of the following DTC’s are present: • Canister purge solenoid errors • ECT errors • MAF errors • MAP errors • Crankshaft sensor errors • Camshaft sensor errors • Fuel System errors • WRAF Sensor errors • WRAF Sensor HTR errors • Oxygen Sensor errors • Oxygen sensor heater errors • Misfire errors
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
1 sec
M/2
1 sec
M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
HO2S Signal Circuit Shorted to Heater Circuit Bank 1 & 2 Sensor 1 (Heater Coupling)
(Bank 1) P2231
The diagnosis detects an increase of leakage current from the heater to the sensor circuit. The leakage is originated by a loss of insulation resistance and induces noise on the signal. Through the heater coupling the measured signal of the WRAF sensor is perturbed and the lambda regulation is influenced. The diagnosis criteria is the difference of the sensor voltage measured at specific times, triggered by the rising and falling edge of the heater PWM-signal.
After the enable conditions are met a cycle counter is started. The counter increments each time a heater cycle is complete and a rise and fall value is calculated. If the actual lambda rise or fall calculated value is greater than 5.8% from modeled lambda characteristic a fail counter is incremented by 1. At the end of 100 cycles, the fail counter is compared to a threshold of 80. If the fail counter exceeds the threshold an error is set.
Enable Conditions
Recurrence Rate 100 ms
M/2
(Bank 2) P2234
P2231 = Active P2234 = Active Injector Control Circuit Cylinder #1
P 0201 P 0261 P 0262
This function will detect an open line, short to ground, and short to battery voltage on Injector Cylinder #1
Detection of injection valve errors are done by hardware diagnosis. Failure Counter = 16 (1.6s) If Engine speed > 1200 rpm High recurrence 100 ms =1.6s = active
Eng. = ON Closed Loop Not in Fuel cutoff Heater PWM ≥ 15% or ≤ 85% Forced Stimulation Amplitude < 3% Forced Stimulation Duration < .35 Sec. Exhaust Temp > 400C Diagnosis = Active This diagnostic is inhibited if any of the following DTC’s are present: HO2S Circuit Faults • • • • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON Fuel pump = on No inhibit on injector circuit No SPI bus errors
Recurrence Rate high: 100 ms low: 300 ms
M\2
• • • • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON Fuel pump = on No inhibit on injector circuit No SPI bus errors
Recurrence Rate high: 100 ms low: 300 ms
M\2
• • • • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON Fuel pump = on No inhibit on injector circuit No SPI bus errors
Recurrence Rate high: 100 ms low: 300 ms
M\2
If Engine speed < 1200 rpm Diag low recurrence 300 ms=4.8s = active Injector Control Circuit Cylinder #2
P 0202 P 0264 P 0265
This function will detect an open line, short to ground, and short to battery voltage on Injector Cylinder #2
Detection of injection valve errors are done by hardware diagnosis. Failure Counter = 16 (1.6s) If Engine speed > 1200 rpm High recurrence 100 ms =1.6s = active
Injector Control Circuit Cylinder #3
P 0203 P 0267 P 0268
This function will detect an open line, short to ground, and short to battery voltage on Injector Cylinder #3
If Engine speed < 1200 rpm Diag low recurrence 300 ms=4.8s = active Detection of injection valve errors are done by hardware diagnosis. Failure Counter = 16 (1.6s) If Engine speed > 1200 rpm High recurrence 100 ms =1.6s = active If Engine speed < 1200 rpm Diag low recurrence 300 ms=4.8s = active
2004file8.doc
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
Injector Control Circuit Cylinder #4
FAULT CODE
MONITOR STRATEGY DESCRIPTION
P 0204 P 0270 P 0271
This function will detect an open line, short to ground, and short to battery voltage on Injector Cylinder #4
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Detection of injection valve errors are done by hardware diagnosis. Failure Counter = 16 (1.6s) If Engine speed > 1200 rpm High recurrence 100 ms =1.6s = active
Injector Control Circuit Cylinder #5
P 0205 P 0273 P 0274
This function will detect an open line, short to ground, and short to battery voltage on Injector Cylinder #5
If Engine speed < 1200 rpm Diag low recurrence 300 ms=4.8s = active Detection of injection valve errors are done by hardware diagnosis. Failure Counter = 16 (1.6s) If Engine speed > 1200 rpm High recurrence 100 ms =1.6s = active
Injector Control Circuit Cylinder #6
Injector Control Circuit Cylinder #7
P 0206 P 0276 P 0277
P 0207 P 0279 P 0280
This function will detect an open line, short to ground, and short to battery voltage on Injector Cylinder #6
This function will detect an open line, short to ground, and short to battery voltage on Injector Cylinder #7
If Engine speed < 1200 rpm Diag low recurrence 300 ms=4.8s = active Detection of injection valve errors are done by hardware diagnosis. Failure Counter = 16 (1.6s) If Engine speed > 1200 rpm High recurrence 100 ms =1.6s = active If Engine speed < 1200 rpm Diag low recurrence 300 ms=4.8s = active Detection of injection valve errors are done by hardware diagnosis. Failure Counter = 16 (1.6s) If Engine speed > 1200 rpm High recurrence 100 ms =1.6s = active
Injector Control Circuit Cylinder #8
P 0208 P 0282 P 0283
This function will detect an open line, short to ground, and short to battery voltage on Injector Cylinder #8
If Engine speed < 1200 rpm Diag low recurrence 300 ms=4.8s = active Detection of injection valve errors are done by hardware diagnosis. Failure Counter = 16 (1.6s) If Engine speed > 1200 rpm High recurrence 100 ms =1.6s = active If Engine speed < 1200 rpm
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
• • • • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON Fuel pump = on No inhibit on injector circuit No SPI bus errors
Recurrence Rate high: 100 ms low: 300 ms
M\2
• • • • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON Fuel pump = on No inhibit on injector circuit No SPI bus errors
Recurrence Rate high: 100 ms low: 300 ms
M\2
• • • • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON Fuel pump = on No inhibit on injector circuit No SPI bus errors
Recurrence Rate high: 100 ms low: 300 ms
M\2
• • • • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON Fuel pump = on No inhibit on injector circuit No SPI bus errors
Recurrence Rate high: 100 ms low: 300 ms
M\2
• • • • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON Fuel pump = on No inhibit on injector circuit No SPI bus errors
Recurrence Rate high: 100 ms low: 300 ms
M\2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Every segment
“A” M/1
Diag low recurrence 300 ms=4.8s = active Random Misfires detected
P0300
•
CARB A misfire failure criteria:
Risk of catalyst damage, monitoring interval over 200 crankshaft revolutions. •
CARB B1 misfire failure criteria:
Emission increase, monitoring interval over the first 1000 crankshaft revolutions. •
CARB B4 misfire failure criteria:
Emission increase, monitoring interval over 1000 crankshaft revolutions. For errors detection, misfire must take place for 4 monitoring intervals.
Monitoring during the 200 crankshaft revolutions: If the single cylinder misfire detected over a critical threshold (48)
Enable Conditions When the Driving Cycle has started.
Flashes
“B 1” M/2
Misfire Cylinder Limp Home Process: The concerning cylinder is shut off immediately Max ( 2 ) cylinders will be shut off with this process.
“B 4” M/2
Monitoring at the end of 200 crankshaft revolutions: If the global sum of detected misfire is greater than the threshold ( 48 ) Or If the sum of detected misfire of each bank is greater than the threshold (48) If RPM < 2700, Load percentage is < 70 and Counter is > than a Calibratable value, then engine criteria is in the FTP region At the end of first 1000 crankshaft revolutions: If the sum of detected misfire is greater than threshold (35) At the end of (other than first) 1000 crankshaft revolutions: If the sum of detected misfire is greater than threshold (35) And The number of violation intervals is greater than (4) during the driving cycle.
Individual Misfire Cylinders #1-8
P 0301 P 0302 P 0303 P 0304 P 0305 P 0306 P 0307 P 0308
During Misfire A monitoring process, if the number of detected misfire on a single cylinder is over a threshold ( 48) of short term catalyst protection, Misfire cylinder limp home is activated, and Misfire “A” errors is confirmed. At each end of Misfire A, B1,
During the Misfire A monitoring window: If the sum of detected misfires of a single cylinder is greater than a threshold (48) Misfire cylinder limp home process is activated: At the end of Misfire A monitoring window:
2004file8.doc
Same as above
Every segment
A” M/1 Flashes
“B 1” M/2 “B 4”
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
or B4 monitoring intervals, if the misfire errors is confirmed for the interval, the cylinder with the highest misfire rate is determined. This threshold is calibratible.
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
This Diagnostic incorporates the CASE learning algorithm proprietary to GM. It performs the target wheel learning with a request via the Scan / EOL tool.
At the end of EOL CASE learning process: If there is not a sufficient number of TDCs’ for learning Or At least one of the ER segment adaptation values at the limit Then The symptom “CASE learn “ is not successful” P 0315 = Active
Misfire detected with rough road
P1380
Rough road conditions must be detected to prevent erroneous misfire detection. The speed disturbance of vehicle wheels is used to evaluate the rough road condition. A rough road signal coming from the ABS ECM through the CAN. If the CAN rough road index receiving message in failure mode, a specific flag is set to inform that misfire was detected without rough road detection available Rough road conditions must be detected to prevent erroneous misfire detection. The speed disturbance of vehicle wheels is used to evaluate the rough road condition. A rough road signal coming from the wheel speed sensors through the CAN. If the loss of communication
If misfire A, B1 or B4 is detected and the CAN rough road index receiving message in failure mode, then P1380 = active
No communication with brake control module
P1381
MIL TYPE & Trips M/2
If RPM < 2700, Load percentage is < 70 and Counter is > than a Calibratable value, then engine criteria is in the FTP region IAt the end of Misfire B1/B4 window: If misfire B1/B4 criteria is confirmed, and the number of detected misfire on a cylinder is over the ratio threshold (35) The Errors is stored
P0315
Misfire detected with rough road
TIME LENGTH AND FREQUENCY
If misfire A criteria is confirmed, and the number of detected misfire on a cylinder is over the ratio threshold (48) The Errors is stored
Crankshaft Angle sensor Errors ( CASE Learn) System Variation Not Learned
Rough road data not available
SECONDARY PARAMETERS AND ENABLE CONDITIONS
If misfire A, B1 or B4 is detected and the communication with ABS module is in failure mode, then P1381 = active
2004file8.doc
Enable Conditions: If requested from a Scan / EOL tool and the throttle is depressed to WOT and CASE has not learned in the first cycle, It is recommended to release the throttle and repeat the procedure. Gear = P / N Then CASE learn procedure is active Enable Conditions: When the Driving Cycle has started
Enable Conditions: When the Driving Cycle has started
At EOL testing with Scan / EOL tool.
M/1
Every segment
N/1
Every segment
N/1
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
Knock Sensor Circuit (Bank1 )
FAULT CODE
P0325
MONITOR STRATEGY DESCRIPTION
from wheel speed sensors occurs, a specific flag is set to inform that misfire was detected with no communication with brake control module. (Customer requirement) The rationality check on the anaput signal from the ATM40 device to the microcontroller is performed under 2 complementary algorithms: (1) Checks the signal value. (2) Checks scattering of this signal. For the range check, the absolute noise value of the ATM40 device is checked if it is inside the normal operating range. This basic check on signal is performed on all cylinders. Two algorithms used, Master and Slave, is to observe the signal bandwidth, both algorithms have to show the same state to increment the failure counter. Master algorithm: The bandwidth of the signal is evaluated for cylinder 3 and 5. In case of short to ground, short to battery or an open, the bandwidth is smaller than during normal operation. The magnitude is compared with a threshold to detect the knock sensor failure. Slave algorithm: The bandwidth of cylinder 3 and 5 are accumulated via an integration method. The accumulated voltage value is
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Range check: Every 90° CKP, the absolute noise value of the ATM40 device is checked if it is inside the normal operating range 0.18 – 4.80V. If an errors is detected, the symptom of knock sensor 1 failure is detected as no signal Master Algorithm: Every 720° CKP, If the bandwidth magnitude of cylinder 3 and 5 does not exceed the threshold 0.04v, the cycle counter is incremented by 1, this counter is reset as soon as the magnitude of cylinder 3 and 5 exceeds the threshold 0.04v. If the cycle counter reaches the 150, a failure has been Slave algorithm: Every 720° CKP, if the accumulated bandwidths value of cylinder 3 and 5 is reached the threshold 3.0v, the cycle counter and accumulated value is reset, otherwise, the cycle counter will be incremented by 1. If the cycle counter reaches the threshold 150, the failure is confirmed. If both detect a failure, the symptom of knock sensor 1 failure is detected as signal plausibility. The failure counter is incremented. If after the failure has been set, the magnitude of cylinder 3 or 5 exceeds the threshold 0.04v, then the cycle counter is decremented by 5. As soon as the cycle counter equals 0 and no check range errors currently present, the failure counter is decremented by 1.
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
This diagnostic is inhibited if any of the following DTC’s are present: Crankshaft Sensor Camshaft Sensor CAN/Communication Failures (SPI) Enable Conditions: IGN = ON Engine state is not in “engine start” or “fuel cut-off” MAF > min value depend on engine speed and coolant temperature 240 mg MAF > min MAF for knock diagnosis 220 mg Rpm > min engine speed for knock diagnosis (1400rpm) Diagnosis = Active
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Every 720 CKP 300 engine revolutions (150 engine cycles)
M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
compared with the threshold to detect the knock sensor failure. If both algorithms detect a failure, the failure counter is incremented.
Knock Sensor Performance (Bank1 )
P 0326
Two algorithms used, Master and Slave, is to observe the signal bandwidth, both algorithms have to show the same state to increment the failure counter. Master algorithm: The bandwidth of the signal is evaluated for cylinder 3 and 5. In case of short to ground, short to battery or an open, the bandwidth is smaller than during normal operation. The magnitude is compared with a threshold to detect the knock sensor failure. Slave algorithm: The bandwidth of cylinder 3 and 5 are accumulated via an integration method. The accumulated voltage value is compared with the threshold to detect the knock sensor failure.
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Every 720 CKP 300 engine revolutions (150 engine cycles)
M\2
When the Failure Ctr. > 16 P 0325 = Active Limp Home: In case of a noise failure the knock control is disabled and spark advance limp home is performed. If the catalyst heating function is active, it is also take into . With a crankshaft, camshaft, or SPI bus failure present, knock control changes also to limp home. Limp Home value: If conditions for knock control are valid and noise failure is present Then the gradient limitation 4.9deg in retard direction is used. If conditions for knock control are not fulfilled and noise failure is present, Then the gradient limitation 0.8deg in advance direction is used. Master Algorithm: Every 720° CKP, If the bandwidth magnitude of cylinder 3 and 5 does not exceed the threshold 0.04v, the cycle counter is incremented by 1, this counter is reset as soon as the magnitude of cylinder 3 and 5 exceeds the threshold 0.04v. If the cycle counter reaches 150, a failure has been detected Slave algorithm: Every 720° CKP, if the accumulated bandwidths value of cylinder 3 and 5 is reached the threshold 3.0v, the cycle counter and accumulated value is reset, otherwise, the cycle counter will be incremented by 1. If the cycle counter reaches the threshold 150, the failure is confirmed. If both detect a failure, the symptom of knock sensor 1 failure is detected as signal plausibility. The failure counter is incremented. If after the failure has been set, the magnitude of cylinder 3 or 5 exceeds the threshold 0.04v, then the cycle counter is
2004file8.doc
This diagnostic is inhibited if any of the following DTC’s are present: Crankshaft Sensor Camshaft Sensor CAN/Communication Failures (SPI) Enable Conditions: IGN = ON Engine state is not in “engine start” or “fuel cut-off” MAF > min value depend on engine speed and coolant temperature 240 mg MAF > min MAF for knock diagnosis 220 mg Rpm > min engine speed for knock diagnosis (1400rpm) Diagnosis = Active
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
If both algorithms detect a failure, the failure counter is incremented.
Knock Sensor Circuit (Bank2 )
P0330
The rationality check on the anaput signal from the ATM40 device to the microcontroller is performed under 2 complementary algorithms: (3) Checks the signal value. (4) Checks scattering of this signal. For the range check, the absolute noise value of the ATM40 device is checked if it is inside the normal operating range. This basic check on signal is performed on all cylinders. Two algorithms used, Master and Slave, is to observe the signal bandwidth, both algorithms have to show the same state to increment the failure counter. Master algorithm:
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
decremented by 5. As soon as the cycle counter equals 0 and no check range errors currently present, the failure counter is decremented by 1. When the Failure Ctr. > 16 P 0326 = Active Limp Home: In case of a noise failure the knock control is disabled and spark advance limp home is performed. If the catalyst heating function is active, it is also take into . With a crankshaft, camshaft, or SPI bus failure present, knock control changes also to limp home. Limp Home value: If conditions for knock control are valid and noise failure is present Then the gradient limitation 4.9deg in retard direction is used. If conditions for knock control are not fulfilled and noise failure is present, Then the gradient limitation 0.8deg in advance direction is used. Range check: Every 90° CKP, the absolute noise value of the ATM40 device is checked if it is inside the normal operating range 0.18 – 4.8v. If an errors is detected, the symptom of knock sensor 1 failure is detected as no signal Master Algorithm: Every 720° CKP, If the bandwidth magnitude of cylinder 3 and 5 does not exceed the threshold 0.04v, the cycle counter is incremented by 1, this counter is reset as soon as the magnitude of cylinder 3 and 5 exceeds the threshold 0.04v. If the cycle counter reaches the 150, a failure has been detected. Slave algorithm: Every 720° CKP, if the accumulated bandwidths value of cylinder 3 and 5 is reached the threshold, the cycle counter and accumulated value is reset, otherwise, the cycle counter will be incremented by 1.
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
This diagnostic is inhibited if any of the following DTC’s are present: Crankshaft Sensor errors Camshaft Sensor errors CAN/Communication Failures (SPI) Enable Conditions: IGN = ON Engine state is not in “engine start” or “fuel cut-off” MAF > min value depend on engine speed and coolant temperature 240 mg MAF > min MAF for knock diagnosis 220 mg Rpm > min engine speed for knock diagnosis 1400rpm Diagnosis = Active
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Every 720 CKP 300 engine revolutions (150 engine cycles)
M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
The bandwidth of the signal is evaluated for cylinder 3 and 5. In case of short to ground, short to battery or an open, the bandwidth is smaller than during normal operation. The magnitude is compared with a threshold to detect the knock sensor failure. Slave algorithm: The bandwidth of cylinder 3 and 5 are accumulated via an integration method. The accumulated voltage value is compared with the threshold to detect the knock sensor failure. If both algorithms detect a failure, the failure counter is incremented.
Knock Sensor Performance (Bank2 )
P 0331
Two algorithms used, Master and Slave, is to observe the signal bandwidth, both algorithms have to show the same state to increment the failure counter. Master algorithm: The bandwidth of the signal is evaluated for cylinder 3 and 5. In case of short to ground, short to battery or an open, the
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Every 720 CKP 300 engine revolutions (150 engine cycles)
M\2
If the cycle counter reaches the threshold 150, The failure is confirmed. If both detect a failure, the symptom of knock sensor 1 failure is detected as signal plausibility. The failure counter is incremented. If after the failure has been set, the magnitude of cylinder 3 or 5 exceeds the threshold 3v, then the cycle counter is decremented by 5. As soon as the cycle counter equals 0 and no check range errors currently present, the failure counter is decremented by 1. When the Failure Ctr. > 16 P 0330 = Active Limp Home: In case of a noise failure the knock control is disabled and spark advance limp home is performed. If the catalyst heating function is active, it is also take into . With a crankshaft, camshaft, or SPI bus failure present, knock control changes also to limp home. Limp Home value: If conditions for knock control are valid and noise failure is present Then the gradient limitation 4.9deg in retard direction is used. If conditions for knock control are not fulfilled and noise failure is present, Then the gradient limitation 0.8v in advance direction is used. Master Algorithm: Every 720° CKP, If the bandwidth magnitude of cylinder 3 and 5 does not exceed the threshold 0.04v, the cycle counter is incremented by 1, this counter is reset as soon as the magnitude of cylinder 3 and 5 exceeds the threshold 0.04v. If the cycle counter reaches the 150, a failure has been detected. Slave algorithm: Every 720° CKP, if the accumulated
2004file8.doc
This diagnostic is inhibited if any of the following DTC’s are present: Crankshaft Sensor errors Camshaft Sensor errors CAN/Communication Failures (SPI) Enable Conditions: IGN = ON Engine state is not in “engine start” or “fuel cut-off” MAF > min value depend on engine speed
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
bandwidth is smaller than during normal operation. The magnitude is compared with a threshold to detect the knock sensor failure.
bandwidths value of cylinder 3 and 5 is reached the threshold, the cycle counter and accumulated value is reset, otherwise, the cycle counter will be incremented by 1. If the cycle counter reaches the threshold (150), the failure is confirmed by this algorithm.
Slave algorithm: The bandwidth of cylinder 3 and 5 are accumulated via an integration method. The accumulated voltage value is compared with the threshold to detect the knock sensor failure. If both algorithms detect a failure, the failure counter is incremented.
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Once per crankshaft Revolution
M/1
and coolant temperature 240 mg MAF > min MAF for knock diagnosis 220 mg Rpm > min engine speed for knock diagnosis 1400rpm Diagnosis = Active
If both detect a failure, the symptom of knock sensor 1 failure is detected as signal plausibility. The failure counter is incremented. If after the failure has been set, the magnitude of cylinder 3 or 5 exceeds the threshold 3v, then the cycle counter is decremented by 5. As soon as the cycle counter equals 0 and no check range errors currently present, the failure counter is decremented by 1. When the Failure Ctr. > 16 P 0331 = Active Limp Home: In case of a noise failure the knock control is disabled and spark advance limp home is performed. If the catalyst heating function is active, it is also take into . With a crankshaft, camshaft, or SPI bus failure present, knock control changes also to limp home.
Crankshaft sensor circuit Electrical Diagnosis
P0335 Crank implausibly Missing Signal
The purpose of the function is to detect a failure if synchronisation on crankshaft signal cannot be achieved.
Limp Home value: If conditions for knock control are valid and noise failure is present Then the gradient limitation 4.9deg in retard direction is used. If conditions for knock control are not fulfilled and noise failure is present, Then the gradient limitation 0.8v in advance direction is used. If no crankshaft signal is detected after a number of camshaft signal edges are detected Cam Pulses = 16 Then the crankshaft signal is missing
2004file8.doc
Ignition key on Not in crankshaft errors limp home position
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
Crankshaft performance Diagnosis
FAULT CODE
P0336 Loss of Synchronizat ion Missing Teeth Additional Teeth
MONITOR STRATEGY DESCRIPTION
Crankshaft error is detected without debouncing if the crank error is set by the camshaft signal acquisition. This is the case if a number of camshafts signal edges were detected at a plausible speed and gradient, and the system is still not synchronized with the crankshaft signal. If valid crankshaft teeth have already been detected, the symptom will be “implausible signal”, otherwise it will be “no signal”. The purpose of the function is to detect crankshaft failure when the system looses synchronization on the crankshaft signal. Synchronization will be lost if the reference gap is not detected at the correct position. The crankshaft signal acquisition may tolerate up to two missing/additional teeth without loosing synchronization, depending on the used target wheel and on configuration data. Synchronization is always lost with counting too many teeth, because the reference gap will be counted as a normal tooth when too many teeth are missing. Tooth Number Error
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Once per crankshaft revolution
M/1
If the number crankshaft teeth error is set Then the crankshaft signal is implausibly
The number of teeth per crankshaft revolution is monitored by evaluation of the counter for missing or additional teeth Based on this value of the crankshaft pulse counter the corresponding symptom is set The pule counter > ± 2 The error flag is set after the maximum failure counter is reached Failure counter > 16 If this error is set the following actions are taken: Engine stop will be set by a time-out if no more crankshaft signal edges are detected. A failure then may be detected by a plausibility test against the camshaft signal. The engine will synchronize and calculated a crank position based on the intake camshaft
The number of teeth per crankshaft revolution is monitored by evaluation of the counter for missing or additional teeth. The low byte of this counter counts the missing teeth, the high byte counts the additional
2004file8.doc
Ignition key on Not in crankshaft errors limp home position
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
teeth. The crankshaft signal acquisition may tolerate up to two missing/additional teeth without loosing synchronization, depending on the used target wheel and on configuration data. If a tooth was missing or added during one revolution, then all variables based on teeth counting will be produced with an error. This concerns e.g. spark advance, segment time, misfire segments, camshaft position, etc. The purpose of the function is to provide an information when the crankshaft signal is inaccurate, in order to take the necessary actions. Depending on the value of crankshaft motoring counter, the symptom will be “missing teeth”, or “additional teeth”
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Intake Camshaft Position (CMP) Sensor Circuit Bank 1 & 2
P0340 Missing Signal (bank 1)
The intake target wheel is an 8x signal consists of 4 long and 4 short high phases and low phases correspondingly. The falling signal edges are numbered from 0 to 7, starting with 0 at the falling edge before logical cylinder 0 TDC. All falling signal edges are having the same distance.
Camshaft segment period (Time between two camshaft signal edges) < min time between two camshaft signal edges Camshaft segment period < [(1, 1, 1, 0.5, 1, 1, 1, 2) * engine speed based factor ]
P0345 Missing Signal (bank 2)
A continuous camshaft edge counter is incremented with every plausible falling signal edge. The diagnoses detect camshaft errors: if no signal edge is detected during one crankshaft revolution.
SECONDARY PARAMETERS AND ENABLE CONDITIONS
Ignition Key on
Camshaft segment period (Time between two camshaft signal edges) > max time between two camshaft signal edges Camshaft segment period > [(1, 1, 1, 0.5, 1, 1, 1, 2) * engine speed based factor ]
TIME LENGTH AND FREQUENCY
Recurrence Rate: Once pre crankshaft revolution Or Camshaft signal implausible is detected
MIL TYPE & Trips M/2
No signal edge is detected for a time > max time between two camshaft signal edges No signal edge is detected for a time > 970 ms Camshaft edge counter for current segment = 0 Camshaft edge counter for current segment = Camshaft edge counter for pervious segment (no increment) Missing signal flag = 1
Ignition Coil Cylinder #1
P 0351 P 2300 P 2301
This function will detect an open line, short to ground, and short to battery voltage on Ignition Coil Cylinder #1
IVVT limp home - function is disabled Synchronization off intake cam is disabled Detection of coil errors are done by hardware diagnosis. Failure Counter = 16 (1.6s)
• • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON No inhibit on coil circuit
Recurrence Rate 100 ms
M\2
• • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON No inhibit on coil circuit
Recurrence Rate 100 ms
M\2
• •
OL Diagnosis Short circuit to ground
Recurrence Rate 100 ms
M\2
• Ignition Coil Cylinder #2
Ignition Coil Cylinder #3
P 0352 P 2303 P 2304
P 0353 P 2306
This function will detect an open line, short to ground, and short to battery voltage on Ignition Coil Cylinder #2
Detection of coil errors are done by hardware diagnosis.
This function will detect an open line, short to ground, and
Detection of coil errors are done by hardware diagnosis.
Failure Counter = 16 (1.6s)
2004file8.doc
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
Ignition Coil Cylinder #4
Ignition Coil Cylinder #5
Ignition Coil Cylinder #6
Ignition Coil Cylinder #7
FAULT CODE
MONITOR STRATEGY DESCRIPTION
P 2307
short to battery voltage on Ignition Coil Cylinder #3
P 0354 P 2309 P 2310
P 0355 P 2312 P 2313
P 0356 P 2315 P 2316
P 0357 P 2318 P 2319
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Failure Counter = 16 (1.6s)
This function will detect an open line, short to ground, and short to battery voltage on Ignition Coil Cylinder #4
Detection of coil errors are done by hardware diagnosis.
This function will detect an open line, short to ground, and short to battery voltage on Ignition Coil Cylinder #5
Detection of coil errors are done by hardware diagnosis.
This function will detect an open line, short to ground, and short to battery voltage on Ignition Coil Cylinder #6
Detection of coil errors are done by hardware diagnosis.
This function will detect an open line, short to ground, and short to battery voltage on Ignition Coil Cylinder #7
Detection of coil errors are done by hardware diagnosis.
Failure Counter = 16 (1.6s)
Failure Counter = 16 (1.6s)
Failure Counter = 16 (1.6s)
Failure Counter = 16 (1.6s)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
• • •
Short circuit to VB Diagnosis IGN = ON No inhibit on coil circuit
• • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON No inhibit on coil circuit
Recurrence Rate 100 ms
M\2
• • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON No inhibit on coil circuit
Recurrence Rate 100 ms
M\2
• • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON No inhibit on coil circuit
Recurrence Rate 100 ms
M\2
• • • • •
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON No inhibit on coil circuit
Recurrence Rate 100 ms
M\2
OL Diagnosis Short circuit to ground Short circuit to VB Diagnosis IGN = ON No inhibit on coil circuit
Recurrence Rate 100 ms
M\2
•
Ignition Coil Cylinder #8
P 0358 P 2321 P 2322
This function will detect an open line, short to ground, and short to battery voltage on Ignition Coil Cylinder #8
Detection of coil errors are done by hardware diagnosis. Failure Counter = 16 (1.6s)
2004file8.doc
• • • • •
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
Intake Camshaft position (CMP) sensor performance Bank 1 & 2
P0341 Implausible Signal (bank 1) P0346 Implausible Signal (bank 2)
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
The 8x signal consists of 4 long and 4 short high phases and low phases correspondingly. The falling signal edges are numbered from 0 to 7, starting with 0 at the falling edge before logical cylinder 0 TDC. All falling signal edges are having the same distance.
Camshaft segment time ratio (the period of two consecutive high level divided by the period of two corresponding low levels) is calculated at every falling camshaft signal edge, a match is searched in a table containing one theoretical ratio and the falling edge number. The calculated segment time ration has a threshold to compensate for ration during high engine speed increase.
A plausibility test is done at every falling signal edge. The algorithm has to synchronize on the camshaft signal. A corresponding status flag is set if synchronization is achieved. An errors flag is set if synchronization fails.
If no time ratio match is found then: Camshaft signal implausible flag is set IVVT limp home – function is disabled Synchronization off intake cam is disabled
The diagnoses detect camshaft errors: if synchronization on the signal fails
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
Ignition Key on
TIME LENGTH AND FREQUENCY
Recurrence Rate: Once pre crankshaft revolution Or Camshaft signal implausible is detected
MIL TYPE & Trips M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Exhaust Camshaft Position (CMP) Sensor Circuit Bank 1 & 2
P0365 Missing Signal (bank 1)
This diagnoses of Segment disc for determining of the relative position of the exhaust CAM. For no signal
No polarity change of the camshaft signal
P0390 Missing Signal (bank 2)
The errors flag for exhaust camshaft missing signal is set after the failure counter max value is reached Failure counter > 16 The diagnoses is present the following are disabled -
Cam phasing (V function) is set to limp home (function ive) Deactivation of “Hardware Based Diagnosis with the CJ120 Deactivate Generator L & F Terminal Monitor Disable knock Control Knock control adaptation (Circuit 1) Maximum end of Pre-injection angle is used & a calibratable constant for start of injection Disable fuel quality adaptation at start (start injection time adaptation) Disable downstream lambda trim control Disable Plausibility check of WARF Sensors Disable WARF Sensors diagnosis Heater Coupling Disable Diagnosis of the WRAF Sensor Dynamic Disable Monitoring Upstream Sensor Signal Disable Monitoring Upstream Sensor Signal during pull full cutoff (PUC) Disable downstream oxygen sensor diagnosis Disable dynamic fuel trim diagnosis Disable catalyst efficiency diagnosis
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
Ignition Key on
TIME LENGTH AND FREQUENCY
Recurrence Rate: 100 ms
MIL TYPE & Trips M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Exhaust Camshaft position (CMP) sensor performance Bank 1
P0366 Implausible Signal (bank 1)
This diagnoses of Segment disc for determining of the relative position of the exhaust camshaft. Implausible signal detection
Polarity change occurs on the wrong position. Rising edge (Transition from low to high level) should occur in a window 34 crank tooth and 46 crank Tooth
P0391 Implausible Signal (bank 2)
Falling edge (Transition from high to low level) should occur in a window 34+60 crank tooth and 46+60 crank Tooth Exhaust camshaft edge must occur with a certain crank tooth window The errors flag for exhaust camshaft implausible signal is set after the failure counter max value is reached Failure counter > 16 The diagnoses is present the following are disabled Cam phasing (V function) is set to limp home (function ive) Deactivation of “Hardware Based Diagnosis with the CJ120 Deactivate Generator L & F Terminal Monitor Disable knock Control Knock control adaptation (Circuit 1) Maximum end of Pre-injection angle is used & a calibratable constant for start of injection Disable fuel quality adaptation at start (start injection time adaptation) Disable downstream lambda trim control Disable Plausibility check of WARF Sensors Disable WARF Sensors diagnosis Heater Coupling Disable Diagnosis of the WRAF Sensor Dynamic Disable Monitoring Upstream Sensor Signal Disable Monitoring Upstream Sensor Signal during pull full cutoff (PUC) Disable downstream oxygen sensor diagnosis Disable dynamic fuel trim diagnosis Disable catalyst efficiency diagnosis -
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
Ignition Key on A delay period (C_T_DLY_CAM_DIAG_EX = 0.5 second) has expired after the start has ended No previous failure on the exhaust camshaft being diagnosed
TIME LENGTH AND FREQUENCY
Recurrence Rate: 100 ms
MIL TYPE & Trips M/2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Catalyst System Low Efficiency Bank 1
P 0420
This DTC detects an insufficient catalyst O2 storage capacity and consequently insufficient conversion properties. This is detected by imposing a forced stimulation and monitoring by a downstream sensor signal During Catalyst test the canister purge is closed. This is to eliminate the need to enable based on canister load.
Monitoring cycle counter must end Catalyst diagnosis value must be greater than the maximum threshold for catalyst diagnosis to detect a catalyst malfunction. The threshold value is set to .5
•
(based on the integrated downstream lambda sensor voltage signal deviation relative to the mean value of the downstream signal)
Cat Temp > 576 °C < 901°C
SECONDARY PARAMETERS AND ENABLE CONDITIONS
Start of a driving cycle
Enable Conditions Coolant Temp > 62 °C
Vehicle Speed > 25kph < 255kph Rpm > 1216 < 3104 MAF > 170mgstk, < 400mgstk Limited dynamic conditions must exist (no extreme variations in speed and load) Lambda controller must be active Forced stimulation of the linear lambda control is active Baro > 740hPa
This diagnostic is inhibited if any of the following DTC’s are present: Cam sensor errors Crank sensor errors ECT errors IAT errors Vehicle speed errors O2 Sensor errors TP errors Fuel system diagnosis errors Misfire errors Catalyst System Low Efficiency Bank 2
P 0430
This DTC detects an insufficient catalyst O2 storage capacity and consequently insufficient conversion properties. This is detected by imposing a forced stimulation and monitoring by a downstream sensor signal During Catalyst test the canister purge is closed This
Monitoring cycle counter must end Catalyst diagnosis value must be greater than the maximum threshold for catalyst diagnosis to detect a catalyst malfunction. The threshold value is set to .5 (based on the integrated downstream lambda sensor voltage signal deviation relative to the mean value of the downstream signal)
2004file8.doc
•
Start of a driving cycle
Enable Conditions Coolant Temp > 62 °C Cat Temp > 576 °C < 901°C Vehicle Speed > 25kph < 255kph
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
20 ms Once per DC
M\2
During low engine speed and load conditions a longer forced stimulation period is required to assure correct diagnosis. The longest period used is 1.24 seconds. This value is multiplied by 20 cycles to determine the worst case test time. The result is 24.8 seconds. Under most operating conditions the test will complete in one continuos test. However, if the test is interrupted, test results for previous cycles are stored. This means the 20 cycles do not have to be consecutive in order to complete the diagnostic. They do have to all be within the same key cycle.
20 ms Once per DC During low engine speed and load conditions a longer forced stimulation period is required to assure correct diagnosis The
M\2
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
canister purge is closed. This is to eliminate the need to enable based on canister load.
downstream signal)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
Rpm > 1216 < 3104 The Load areas are: MAF > 170mgstk, < 400mgstk Limited dynamic conditions must exist (no extreme variations in speed and load) Lambda controller must be active Forced stimulation of the linear lambda control is active Baro > 740hPa
This diagnostic is inhibited if any of the following DTC’s are present: Cam sensor errors Crank sensor errors ECT errors IAT errors Vehicle speed errors O2 Sensor errors TP errors Fuel system diagnosis errors Misfire errors
2004file8.doc
TIME LENGTH AND FREQUENCY
diagnosis. The longest period used is 1.24 seconds. This value is multiplied by 20 cycles to determine the worst case test time. The result is 24.8 seconds. Under most operating conditions the test will complete in one continuos test. However, if the test is interrupted, test results for previous cycles are stored. This means the 20 cycles do not have to be consecutive in order to complete the diagnostic. They do have to all be within the same key cycle.
MIL TYPE & Trips
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
Evaporative Emission (EVAP) Purge Solenoid Control Circuit
Open Line P 0443 SCG P 0458
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
The purpose is to diagnose electrical errors detected by the hardware (depending of output driver used).
The Electrical diagnosis is detected by the hardware internal to the ECM. SCG, SCVB, or Open Line will be detected.
The purpose is to diagnose electrical errors detected by the hardware (depending of output driver used).
The Electrical diagnosis is detected by the hardware internal to the ECM. SCG, SCVB, or Open Line will be detected.
SECONDARY PARAMETERS AND ENABLE CONDITIONS
This diagnostic is inhibited if any of the following DTC’s are present No S Errors
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Recurrence Rate 100 ms
M/2
Recurrence Rate 100 ms
M/2
Enable Conditions: IGN = ON
SCVB P 0459 Evaporative Emission (EVAP) Vent Solenoid Control Circuit
Open Line P 0449 SCG P 0498
This diagnostic is inhibited if any of the following DTC’s are present EVAP Enable Conditions: IGN = ON
SCVB P 0499 Fuel Level Sensor # 1 Performance / Rationality Diagnosis
P 0461
This Diagnostic checks the integrity of the Fuel Level sensor signal.
Fuel Level > FTL @ Start + .78%. Or Fuel Level < FTL @ Start – .78%. For Time > 1800s and Failure Ctr = 2 P 0461 = Active
Enable Conditions IGN = ON ENG = RUNNING Fuel Level > 7.8 L Fuel Level < 27.73 L Vehicle Spd > 25 kph Diagnosis = Active
Recurrence Rate 1s
N/1
Fuel Level Sensor # 1 Electrical Diagnosis Fuel Level Sensor # 1 Electrical Diagnosis
P 0462
This Diagnostic Detects a SCG in the Fuel Level Sensor or Circuit
Enable Conditions IGN = ON System Voltage Faults = None
Recurrence Rate 1s
N/1
P 0463
This Diagnostic Detects an Open Signal Line / SCVB in the Fuel Level Sensor or Circuit
FTL Volts < .5V for Time > 20s and Failure Ctr. > 50s P 0462 = Active FTL Volts > 3v for Time > 20s and Failure Ctr. > 50s P 0463 = Active
Enable Conditions IGN = ON System Voltage Faults = None
Recurrence Rate 1s
N/1
Vehicle Speed Input Signal Diagnosis
P 0500
The Vehicle speed input diagnostic is performed by ing the Can Link is functional and the TCM is sending reliable output shaft data. This diagnostic will detect an incorrect Crank Request Key
IGN = ON Can Message = Invalid Failure Ctr. > 16 (1.6s) P 0500 = Active
This diagnostic is inhibited if any of the following DTC’s are present: VSS Can Communication Diagnosis = Active
Recurrence Rate 100 ms
M/2
100mS
N/1
Start Switch Circuit (Crank
P 0512
NOT COMPLETE
2004file8.doc
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
Request) (LAV Only) Engine Oil Pressure (EOP) Sensor Rationality
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Position P0521
Pressure Sensor plausibility check (Stuck Sensor)
In case of engine speed gradient variation (increasing or decreasing), during this engine speed variation we can check the oil pressure variation to determine a stuck sensor: in case of no variation after s certain delay we set an error assuming we have a failure with the Oil pressure sensor (detection of stuck value).
Absolute value of the delta between the current engine speed value and pervious engine speed value < a calibratable threshold is meet for a period of time greater than a calibratable time Time = 1 second ABS(RPM(n) – RPM(n-1)) < 25 rpm Absolute value of the delta between the current acquisition and pervious oil pressure value < a calibratable threshold ABS(EOP_MES(n) – EOP_MES(n-1)) < 0.25 bar If the condition is meet for a period of time greater than a calibratable period Time = 1.5 second
No previous failure on the Oil Pressure sensor is present
100ms
M/1
Recurrence Rate; 100 ms
M/1
Ignition Key on The coolant must be with in thresholds: Minimum coolant temperature for oil pressure diagnosis < current coolant temperature < maximum coolant temperature for oil pressure diagnosis 20° C < ECT < 100° C The engine speed must be with in thresholds: Minimum engine speed for oil pressure diagnosis < current engine speed< maximum engine speed for oil pressure diagnosis 600 < RPM < 6300
If a failure is detected an errors flag is set after the failure counter max value is reached Failure counter > 16 (1.6s)
Engine Oil Pressure (EOP) Sensor Circuit
P0522 Low Voltage P0523 High Voltage
The Oil Pressure Sensor is checked for defects by a range check of its output voltage V_POIL. Two different conditions can be detected: - Oil pressure sensor signal line short to ground or open line - Oil pressure sensor signal line short to battery voltage
If this error is set the following actions are taken: Cam phasing (V function) will be engine speed limited (minimum engine speed to activate cam phasing will be increased to 1500 RPM) Short to ground/open circuit (low Voltage) Sensor voltage < threshold for detection short ground/open line Sensor Volts < .1V
Short to battery (high voltage) Sensor voltage > threshold for detection
2004file8.doc
Ignition Key on
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Recurrence Rate; 100 ms
M/2
Plausibility diagnosis IGN = ON ENG = RUNNING RPM > 450
Recurrence Rate; 100 ms
N\1
OL Diagnosis, Short circuit to ground Short circuit to VB Diagnosis IGN = ON A/C requested = on Diagnostic = Active
Recurrence Rate; 100 ms
N\1
short to battery Sensor Volts < 4.9V If any of the electrical failure is detected an errors flag is set after the failure counter max value is reached Failure counter > 16 (1.6s)
Engine Idle Speed Diagnosis
P 0506 P 0507
This diagnostic detects an out of control Idle Rpm, When Idle conditions are desired.
If this error is set the following actions are taken: Cam phasing (V function) will be engine speed limited (minimum engine speed will be increased Rpm > Desired Rpm By TBL (200) Time > 10s Failure Ctr. > 1.6s P 0507 = Active Or Rpm < Desired Rpm By TBL (100) Time > 10s Failure Ctr. > 1.6s P 0506 = Active
This diagnostic is inhibited if any of the following DTC’s are present: Crankshaft Sensor ETC TP Fuel Injectors Ignition Coils MAF MAP S Enable Conditions IGN = ON Eng = Running Throttle = Closed for a Time > 5s TP Adapt = Done Vehicle Speed = 0 ECT > -7c ECT < 120c MAF < 300 mg/stk S Duty Cyc. < 100% Diagnosis = Active
A/C System High Side Pressure Sensor
P 0531
This Diagnostic will detect a skewed signal, a plausibility check on A/C Pressure Sensor will check if the signal is valid
A/C System High Side Pressure Sensor
P 0532 P 0533
This Diagnostic will detect an open line, short to ground, and short to battery voltage on A/C Pressure Sensor
AC Request = No AC Clutch = No AC Volts > 4.9 for Time > 240s Failure Ctr. > 16 (1.6) P 0531 = Active Detection of A/C pressure sensor electrical errors are done by hardware diagnosis internal to the ECM. AC Volts > 4.9V Failure Ctr. > 16 (1.6s) P 0533 = Active
If any AC DTC is stored, The AC system
2004file8.doc
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
System Voltage Diagnosis
FAULT CODE
P 0562
MONITOR STRATEGY DESCRIPTION
This Diagnosis detects low system voltage
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
This Diagnosis detects High system voltage
System Volts < 8v
Enable Conditions IGN = ON ENG = RUNNING ENG Runtime > 10s RPM > 500
Recurrence Rate; 100 ms
G/1
Enable Conditions IGN = ON ENG = RUNNING ENG Runtime > 10s RPM > 500
Recurrence Rate; 100 ms
G/1
IGN = ON
Recurrence Rate; 100 ms
M\1
System Volts > 16v Failure counter > 30 (3s) P 0562 = Active
Control Module Read Only Memory (ROM) Diagnosis Control Module Not Programmed Control Module Random Access Memory (RAM) Diagnosis ETC – LEVEL 3 MONITORING FUNCTIONS. ECM Self Test Control Module Performance (Safety Level 3) Diagnosis
P 0601
P 0602
This diagnostic will detect an ECM errors for ROM This is for service ECU
MIL TYPE & Trips
will be disabled.
P 0563 = Active
P 0563
TIME LENGTH AND FREQUENCY
AC Volts < .1V Failure Ctr. > 16 (1.6s) P 0532 = Active
Failure counter > 30 (3s)
System Voltage Diagnosis
SECONDARY PARAMETERS AND ENABLE CONDITIONS
Detection of ECM ROM errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (1.6s) ECM Not Programmed
N/1
P 0604
This diagnostic will detect an ECM errors for RAM
Detection of ECM RAM errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (1.6s)
IGN = ON
P 0606
The multiple diagnostic monitors associated with this diagnostic trouble code have all been added due to the ETC system. The monitors include RAM and ROM checks; predrive check; Can, SPI, Check Sum. instruction set tests; program flow monitoring and communication monitoring by both the main microprocessor and the monitoring microprocessor. There is also a check of the ability to control engine speed without throttle control.
1.
Enable Conditions Key “ON”
2. 3.
4.
5.
It is checked each driving cycle that the monitoring microprocessor can disable through hardware connection the throttle and fuel injector drivers. A special set of instructions are checked continuously with set inputs for proper calculation. The program flow counter is monitored by checking that the level 2 monitors are called at specific time intervals. The communication between the main microprocessor and the monitoring microprocessor is checked that correct signals are sent at specific time intervals. The ROM check tests the algorithm
2004file8.doc
Once per Ignition Cycle (100 ms abc increment)
M\1
Every crankshaft revolution
M/1
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
6.
7.
Vehicle Speed output Signal Electrical Diagnosis
P 0608
The Hardware detects electrical errors on the vehicle speed output signal ine.
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Recurrence Rate; 200 ms
N/1
Recurrence Rate; 200 ms
N/1
Recurrence Rate; 200 ms
G/1
Recurrence Rate; 100 ms
N/1
software and the calibration data separately and continuously as well as the entire ROM at startup. The RAM test checks the entire RAM at startup and does continuous complement checks of the level 2 monitoring flags. Once a level 2 errors has occurred, the engine speed limitation monitor checks that engine speed is controlled below a threshold.
Detection of ECM self test errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 cts (Time depends on engine speed) P 0606 = active The Hardware detects OL, SCG, & SCVB Failure Ctr. > 16 (3.2s)
This diagnostic is inhibited if any of the following DTC’s are present: VSS Enable Conditions IGN = ON
Starter Relay Circuit
Generator FTerminal Diagnosis
Fuel Pump Speed Control Circuit
P 0615 P 0616 P 0617
P 0625 P 0626
P 0627
This diagnostic will detect an ECM input open line, short to ground, or short to battery voltage on the Starter Relay Circuit This diagnostic detects a failure on the Generator F – Terminal. The F – Terminal is monitored by the ECM. There are two Test performed: Key ON & Run
This diagnostic will detect ECM input noisy on interface in the Fuel Pump Speed
Detection of Starter Relay Circuit electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (3.2s) P 0615 = active P 0616 = active P 0617 = active Key ON Test Gen Filtered (MMV) Duty Cycle ≥ 65% Time > 5s Failure Ctr. > 1 (.2s) P 0626 = Active Run Test Rpm < 3000 Gen Filtered (MMV) Duty Cycle ≤ 5% Time > 5s Failure Ctr. > 1 (.2s) P 0625 = Active
Enable Conditions Key ON Test IGN = ON Rpm = 0 Run Test IGN ON ENG ON
Detection of Variable Fuel Pump Speed electrical errors are done by hardware diagnosis internal to the ECM.
IGN = ON Fuel pump controlled by fuel pump speed control (FPSC)
2004file8.doc
When the relay is commanded on, an open, or short to battery voltage can be detected. When the relay is commanded off, a short to ground can be detected. This diagnostic is inhibited if any of the following DTC’s are present: Crankshaft Sensor Cam Sensor Generator
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Control Circuit
Failure Ctr. > 16 (1.6) P 0627 = active Detection of Fuel Pump Relay electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (1.6s) P 0628 = active Detection of Variable Fuel Pump Speed electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (1.6) P 0628 = active Detection of Fuel Pump Relay electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (1.6) P 0629 = active Detection of Fuel Pump Relay electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (1.6) P 0629 = active Detection of Variable Fuel Pump Speed electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (1.6) P 0231 = active Detection of Variable Fuel Pump Speed electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (1.6) P 0232 = active Primary tank fuel almost empty (primary tank fuel total less than 6.25 Litter) AND Secondary tank above empty threshold (secondary tank fuel total above 33 Litter) for a period of 60 Second. Detection of Variable Fuel Pump Speed electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (1.6s) P 1251 = active Detection of Variable Fuel Pump Speed electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (1.6s) P 1252 = active
Fuel Pump Relay Circuit Low Voltage
P 0628
This diagnostic will detect an open line or short to ground on Fuel Pump Relay
Fuel Pump Speed Control Output Circuit Low Voltage
P 0628
Fuel Pump Speed Control Output Circuit High Voltage
P 0629
This diagnostic will detect an ECM input open line or short to ground on the Fuel Pump Speed Control Circuit This diagnostic will detect a short to battery voltage on Fuel Pump Relay Circuit
Fuel Pump Relay Circuit High Voltage
P 0629
This diagnostic will detect a short to battery voltage on Fuel Pump Relay Circuit
Fuel Pump Speed Control Circuit
P 0231
Fuel Pump Speed Control Circuit
P 0232
Fuel Tank Transfer Pump
P 2636
This diagnostic will detect a fuel pump open circuit between the Fuel Pump Speed Control Module and the Fuel Pump This diagnostic will detect a fuel pump open circuit between the Fuel Pump Speed Control Module and the Fuel Pump This diagnostic will detect a failed fuel tank transfer pump
Fuel Pump Speed Control Circuit
P 1251
This diagnostic will detect an output driver failure on the Fuel Pump Speed Control or an FPSC internal Failure
Fuel Pump Speed Control Circuit
P 1252
This diagnostic will detect an erratic output on the Fuel Pump Speed Control
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
IGN = ON Fuel pump not controlled by fuel pump speed control (FPSC)
Recurrence Rate; 100 ms
N/1
IGN = ON Fuel pump controlled by fuel pump speed control (FPSC) No SPI bus failures
Recurrence Rate; 100 ms
N/1
IGN = ON Fuel pump controlled by fuel pump speed control (FPSC)
Recurrence Rate; 100 ms
N/1
IGN = ON Fuel pump not controlled by fuel pump speed control (FPSC)
Recurrence Rate; 100 ms
N/1
IGN = ON Fuel pump controlled by fuel pump speed control (FPSC) No SPI bus failures
Recurrence Rate; 100 ms
N/1
IGN = ON Fuel pump controlled by fuel pump speed control (FPSC) No SPI bus failures
Recurrence Rate; 100 ms
N/1
1S
N/1
IGN = ON Fuel pump controlled by fuel pump speed control (FPSC) No SPI bus failures
Recurrence Rate; 100 ms
N/1
IGN = ON Fuel pump controlled by fuel pump speed control (FPSC) No SPI bus failures
Recurrence Rate; 100 ms
N/1
No SPI bus failures
IGN = ON
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
Fuel Pump Speed Control Circuit
P 1253
This diagnostic will detect a input failure 100% duty cycle on the Fuel Pump Speed Control Circuit
Engine Metal Overtempature Protection
P 1258
This diagnostic will detect an errors for an Engine Metal Overtempature
Fuel Pump Speed Control Circuit
P 1254
This diagnostic will detect a input failure 0% duty cycle on the Fuel Pump Speed Control Circuit
Multifunction Cruise Switch 1
P 0564
This diagnostic will detect an Out of Range Cruise Switch Set/Coast Stuck Cruise Switch Resume/Accel Stuck Cruise Switch,
Brake Lamp Switch
P 0572 P 0573
This diagnostic will detect a short to ground/stuck closed or a short to battery/stuck open
Extended Travel Brake Switch Circuit (LAV ONLY) Throttle Actuator Position Performance
P 1575
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Detection of Variable Fuel Pump Speed electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (1.6s) P 1253 = active Detection of Engine Metal Overtempature is internal to the ECM. Failure Ctr. > 22 (2.2s) P 1258 = active Detection of Variable Fuel Pump Speed electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (1.6s) P 1254 = active Detection of an Out of Range Cruise Switch is Failure Ctr > 48 (4.8s) P 0564 is active
Detection of Brake Lamp Switch is VS = 0 kph (Vehicle must come to a stop to inc. counter.) Failure Ctr. > 255 P 0572 P 0573
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
IGN = ON Fuel pump controlled by fuel pump speed control (FPSC) No SPI bus failures
Recurrence Rate; 100 ms
N/1
IGN = ON Engine running This Diagnostic inhibits IAT, ECT, Misfire, Lambda, Fuel System, and Cruise Diagnostics from running. IGN = ON Fuel pump controlled by fuel pump speed control (FPSC) No SPI bus failures
Recurrence Rate; 100 ms
M/1
Recurrence Rate; 100 ms
N/1
IGN = ON Engine = Running
Recurrence Rate; 100 ms
N/1
IGN = ON Engine = Running VB > 11V TP > 40% VS > 80 kph
Recurrence Rate; 100 ms
N/1
N/1 Not ed at this time
P 0638
This diagnosis is to detect a throttle valve errors. Command Performance
I Duty cycle of the ETC Position Controller I >= 100 % for Time > 0.85 s And if the Time < 1.2s ( if breaks free in this amount of time, we do not have an errors) Otherwise : Failure counter max = 12 P 0638 = Active Limp home – RPM limitation.
2004file8.doc
Activation: IGN =1. Deactivation: IGN =0 -
LV_ERR_TP already set Limp home active
Recurrence Rate; 5 ms
M/1
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
Reference Voltage #1 Diagnosis (5 V)
FAULT CODE
MONITOR STRATEGY DESCRIPTION
P 0641
The purpose of this Diagnostic is to detect a failure 0n the 5 V Reference line which is a supply to multiple engine sensors.
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Ref V < 2V (SCG) Failure Ctr. > 8 (.2s) P 0641 = Active Ref V > 3V (SVB) Failure Ctr. > 8 (.2s) P 0641 = Active
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Enable Conditions IGN = ON
Recurrence Rate; 25 ms
M/1
Ref V Diff > .5V Failure Ctr. > 8 (.2s) Ref Signal = Noisy P 0641 = Active
A/C Compressor Clutch Relay
P 0646 P 0647
This Diagnostic will detect an open line, short to ground, and short to battery voltage on A/C Compressor Clutch Relay
Detection of A/C compressor clutch relay electrical errors are done by hardware diagnosis internal to the ECM. If at Ignition “ON” an errors is detected Failure Ctr. > 16 (1.6s) P 0646 or P 0647 is Active
OL Diagnosis, Short circuit to ground Short circuit to VB Diagnosis IGN = ON AC Request = ON A/C Clutch = ON Diagnostic = Active
Recurrence Rate; 100 ms
N\1
Reference Voltage #2 Diagnosis (5 V)
P 0651
The purpose of this Diagnostic is to detect a failure 0n the 5 V Reference line which is a supply to multiple engine sensors.
Ref V < 2V (SCG) Failure Ctr. > 8 (.2s) P 0651 = Active Ref V > 3V (SVB) Failure Ctr. > 8 (.2s) P 0651 = Active
Enable Conditions IGN = ON
Recurrence Rate; 25 ms
M/1
Ref V Diff > .5V Failure Ctr. > 8 (.2s) Ref Signal = Noisy P 0651 = Active
Malfunction Indicator Lamp
P 0650
Cooling Fan Relay #1 Control Circuit Low Voltage
P 0691
This Diagnosis detects electrical errors: OL/SCG or SCVB, in the Malfunction Indicator Lamp/Circuit This Diagnostic will detect a low voltage / open circuit on Cooling fan
Detection of Malfunction Indicator Lamp errors are done by hardware diagnosis internal to the ECM. Failure counter > 16 (3.2s) Detection of Cooling Fan electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (3.2s) P 0691 = Active
IGN = ON Battery voltage > 11V
Recurrence Rate; 200 ms
M/2
OL / SCG Diagnosis IGN = ON
Recurrence Rate; 200 ms
M\2
This Diagnostic will detect High voltage on the Cooling fan relay / circuit.
Detection of Cooling Fan electrical errors are done by hardware diagnosis internal to the ECM.
Short circuit to battery voltage IGN = ON
Recurrence Rate; 200 ms
M\2
(LAV ONLY) Cooling Fan Relay # 1 Control Circuit High
P 0692
2004file8.doc
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
Voltage Cooling Fan Relay #2 Control Circuit Low Voltage
P 0693
This Diagnostic will detect a low voltage / open circuit on Cooling fan Not ed on the XLR
Cooling Fan Relay #2 Control Circuit High Voltage
P 0694
This Diagnostic will detect High voltage on the Cooling fan relay / circuit. Not ed on the XLR
Control Module Power Main Relay
P 0686 P 0687
This diagnostic will detect an ECM input open line, short to ground, or short to battery voltage on the Control Module Power Main Relay
Control Module Power Main Relay ( Diag)
P 0689 P 0690
The Diagnosis is performed to detect if the Main Relay has effectively switched and remains on after Key-On. The Diagnosis is also performed to detect if the Main Relay has effectively switched off after Key-Off.
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
OL / SCG Diagnosis IGN = ON
Recurrence Rate; 200 ms
M\2
Short circuit to battery voltage IGN = ON
Recurrence Rate; 200 ms
M\2
IGN = ON
Recurrence Rate; 200 ms
N/1
If ignition switch is on and ignition voltage > 11volts And time >1.5 seconds has elapsed.
IGN = ON and ignition voltage > 11 volts
Recurrence Rate; 12.5 ms
N/1
Then if VB (relay voltage) is < 10 volts for 0.200 seconds P0689 = active
OR Ignition Off
Failure Ctr. > 16 (3.2s) P 0692 = Active Detection of Cooling Fan electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (3.2s) P 0693 = Active Detection of Cooling Fan electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 16 (3.2s) P 0694 = Active Detection of Main Relay Circuit electrical errors are done by hardware diagnosis internal to the ECM. Failure Ctr. > 10 (2s) P 0686 = active P 0687 = active
SECONDARY PARAMETERS AND ENABLE CONDITIONS
or If ignition switch is off And time >1.5 seconds has elapsed. Then if VB (relay voltage) is > 10 volts for 0.125 seconds P0690 = active
Transmission Control Unit
P 0700
This diagnostic will detect an errors for the TCU and report it to the ECM to Light the MIL
Brake Lamp Switch
P 0703
This diagnostic will detect the plausibility of the Brake Lamp Switch
Automatic Gear Shift Signal
P 0850
This diagnostic will detect a failure on the Park Neutral
Detection of TCU errors are done by hardware diagnosis internal to the ECM Failure Ctr. > 1 (.1s) P 0700 = active
IGN = ON
Recurrence Rate; 100 ms
M/1
Detection of Brake Lamp Switch Plausibility is Failure Ctr. > 48 (4.8s) P 0703 is active
IGN = ON Engine = Running
Recurrence Rate; 100 ms
N/1
Selected Gear = PN PN = Not Active
This diagnostic is inhibited if any of the following DTC’s are present:
Recurrence Rate; 1s
N/1
2004file8.doc
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
(Park / Neutral)
MONITOR STRATEGY DESCRIPTION
Switch
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
P 0850 = Active VSS > 10mph Failure counter > 16 s PN = Active P0850 = Active
Gear Errors (TCM) CAN Errors VSS IGN = ON PN Input = Active
Detection of the TCS Drag Reduction Request is Failure Ctr > 16 (200ms) P 1513 is active
IGN = ON Engine = Running
Recurrence Rate; 12.5 ms
N/1
Detection of the Theft Deterrant Missing Message is performed internal to the ECM Failure Ctr > 16 (1.6) P 1626 is active P 1629 is Active
IGN = ON
Recurrence Rate; 100 ms
N/1
IGN = ON
Recurrence Rate; 100 ms
N/1
Recurrence Rate; 100 ms
N/1
IGN = ON
TCS Drag Reduction Request (LAV ONLY)
P 1513
Theft Deterrant System
P 1626 Signal Lost P 1629 Message not Received
Theft Deterrant Learn Mode Active
P 1630
This diagnostic will detect an errors on Learn Mode Active for Theft Deterrant
Detection of the Theft Deterrant Learn Mode is performed internal to the ECM Failure Ctr > 16 (1.6s) P 1630 is active
Theft Deterrant Start Enable Signal Not Correct
P1631
This diagnostic will detect an errors on Signal Not Correct for Theft Deterrant
Detection of the Theft Deterrant Start Enable Signal Not Correct is performed internal to the ECM Failure Ctr > 16 (1.6s) P 1631 is active
Lift / Dive for RTD (Real Time Damping)
P 1652
This diagnostic will detect the plausibility for Lift / Dive for RTD
Detection of the Lift / Dive for RTD is Failure Ctr > 16 (.4s) P 1652 is active
IGN = ON Engine = Running
Recurrence Rate; 25 ms
N/1
The Generator L-terminal output diagnostics indicate a short to power failure or a short to ground failure continuously for a time period, that is greater than or equal to Key ON Test Gen Filtered (MMV) Duty Cycle ≥ 97% Time > 15s Failure Ctr. > 1 (.2s) P 2501 = Active Run Test Gen Filtered (MMV) Duty Cycle ≤ 2% Time > 5s Failure Ctr. > 1 (.2s) P 2500 = Active
Key-on Test.
Recurrence Rate; 100 ms
G/1
Generator LTerminal Diagnosis
P 2500 Generator LTerminal Low Voltage P 2501 Generator LTerminal High Voltage
This diagnostic will detect a No Response on TCS Drag Reduction Request This Diagnostic will detect if the VTD Signal is lost or not received
This diagnostic detects a failure on the Generator L – Terminal. The Generator Lterminal is monitored by the Powertrain controller. The Generator voltage regulator indicates a fault condition (i.e., internal fault, broken belt) by pulling the L-terminal input to a “low” state. There are two Test performed: Key ON & Run
2004file8.doc
Run Test This diagnostic is inhibited if any of the following DTC’s are present: L –terminal CAM Crank Rpm = 0
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
The generator L-terminal fault diagnostic trouble code (DTC) shall be cleared when the conditions for the L-Terminal fault DTC are not present, or when a Service Test Tool has commanded clearing of the DTC. Fuel Level Sensor # 2 Performance / Rationality Diagnosis
P 2066
This Diagnostic checks the integrity of the Fuel Level sensor signal.
Fuel Level > FTL @ Start + .78%. Or Fuel Level < FTL @ Start – .78%. For Time > 1800s and Failure Ctr = 2 P 2066 = Active
Enable Conditions IGN = ON ENG = RUNNING Fuel Level > 7.8 L Fuel Level < 27.73 L Vehicle Spd > 25 kph Diagnosis = Active
Recurrence Rate; 1s
N/1
Fuel Level Sensor # 2 Electrical Diagnosis Fuel Level Sensor # 2 Electrical Diagnosis
P 2067
This Diagnostic Detects a SCG in the Fuel Level Sensor or Circuit
Enable Conditions IGN = ON System Voltage Faults = None
Recurrence Rate; 1s
N/1
P 2068
This Diagnostic Detects an Open Signal Line / SCVB in the Fuel Level Sensor or Circuit
FTL Volts < .5V for Time > 20s and Failure Ctr. > 50s P 2067 = Active FTL Volts > 3v for Time > 20s and Failure Ctr. > 50s P 2068 = Active
Enable Conditions IGN = ON System Voltage Faults = None
Recurrence Rate; 1s
N/1
Throttle Actuator Control (TAC) Motor Control Circuit
P2100
The TAC H-Bridge IC checks every 1ms the MTC if there is a short circuit to battery voltage or ground. In addition the IC is able to detect overtemperature.
TAC H-Bridge IC Flag = 1 Failure counter max = 12
Activation: IGN =1. The errors bits, Failure-counters and other variables or bits are initialised
Recurrence Rate; 1s
M /1
Recurrence Rate; 5 ms
M/1
Throttle Actuator Position Performance
P 2101
This diagnosis is able to detect a throttle valve errors or a jammed actuator. The given pulse width modulation signal MTWM exceeds the position controller permissible maximum value for longer than designated time.
P 2100 =Active Limp home – RPM limitation.
TP Average – TP Set Point> 1.503 ° TP for the Time > 2 s Failure counter max = 12 P 2101 = Active Limp home – RPM limitation
2004file8.doc
Deactivation: IGN =0 or the setting conditions are not fulfilled anymore LV_ERR_TP already set Limp home active
Activation: IGN =1. Deactivation: IGN =0 LV_ERR_TP already set Limp home active
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
Throttle Actuator Position Module Performance – Safety Level 2
P 2108
MONITOR STRATEGY DESCRIPTION
This DTC is able recognize that any of the safety level 2 flags are enabled ( APP, MAF,ADC,ECT, etc) The errors would be set and limp home is enabled.
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Any of the level 2 flags enabled : LV_XXX_MON = 1 Failure counter max = 12
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Activation: IGN = 1 Deactivation: IGN = 0 LV_ERR_TP already set Limp home active
Recurrence Rate 40 ms
M/1
Activation: IGN = 1 Deactivation: IGN = 0 LV_ERR_TP already set Limp home active
Recurrence Rate 5 ms
M/1
P 2108 = Active Limp home – RPM limitation
Throttle position adaptation
P 2119
This diagnosis is to determine the measurement inaccuracy between the two signal voltages. They will be referenced to their supply voltage. After the initial engine start and component change the characteristic Potentiometer value is learnt within an adaptation routine. The value for the lower stop is stored at the end of the driving cycle in the non-volatile memory. A plausibilization unit monitors both sensor signals, as well as the belonging supply voltage and from them establishes the system state of the THR-position acquisition (undisturbed, disturbed, THR-position not recognizable). From the voltages of both TPchannels, the THR-position for each channel is determined, taking into consideration the adaptation values for the lower stop. If the conditions are not fulfilled the errors is set. Ignition and injection would be deactivated.
Start Routine First Check of Limp Home position at Start routine (ST_CHK_CHK_LIH_1) I Voltage_TP_X – 0.84 V ≤ 0.2490 V P 2119 = Active Ignition and injection remains deactivated NEXT Step : Spring test at the Start routine (ST_CHK_GO_UPPER_POS) TP_AV – 17.0027 ° ≤ 1.860 °TP / 5ms P 2119 = Active Limp Home 2 Active
nd
2 Limp Home position at Start routine (ST_CHK_CHK_LIH_2) I Voltage_TP_1/2 – Adapt.value for ch 1/2 I ≤ 0.2490 V P 2119 = Active Limp Home 2 Active Adaptation Routine Adaptation of limp home position (AD_CHK_LIH_1) Voltage TP Ch 1 / 0.840≤ 0.3027 V
2004file8.doc
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Voltage TP Ch 2 / 4.141 ≤ 0.3027 V P 2119 = Active Limp Home 2 Active Spring test at the adaptation routine TP_AV – 17.0027 ° ≤ 1.860 °TP / 5ms P 2119 = Active *Limp Home 2 Active
nd
2 Limp home check I Voltage_TP_1/2 – Adapt.value for ch 1/2 I <= 0.2490 V P 2119 = Active *Limp Home 2 Active Adaptation of lower mechanical stop (AD_GO_LOWER_STOP)
Voltage_TP _1 - 0.508 V ≤ 0.0781 Voltage_TP _1 - 4.492 V ≤ 0.0781 P 2119 = Active
*Limp Home 1 Active Limp home spring Test opening TP_Set point_during adapt ≥ 8.0017 ° Third Check of Limp Home position at Adaptation routine (AD_CHK_LIH_3)
IVoltage_TP _1 - 0.508 V ≤ 0.0781 Voltage_TP _2 - 4.492 V ≤ 0.0781
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Recurrence Rate 25 ms
M/1
P 2119 = Active *Limp Home 2 Active
* ETC Limp Home 1 -Throttle valve without the power( hold by spring in the Limp-Home position) -Engine speed limitation in limp home mode( with considering the drivers request)
*ETC Limp Home 2 -Throttle valve without the power( hold by spring in the Limp-Home position) -Engine speed limitation in limp home mode( without considering the drivers request) Accelerator Pedal Position (APP) Sensor 1 Circuit Low Voltage
Accelerator Pedal Position (APP) Sensor 1 Circuit High Voltage
Throttle Position (TP) Sensor 1-2 Correlation
P2122
P2123
P 2135
Activation: IGN =1. The errors bits, Failure-counters and other variables or bits are initialised
This DTC can distinguish the circuit’s high voltage. During normal operation, the output voltages of the APP-sensors must lie within a permitted range.
Voltage_PVS_1 < 0.1465 V Failure counter max = 12
Limp home – calibrateble TQ reduction with pedal limitation
Deactivation: IGN =0 or the setting conditions are not fulfilled anymore LV_ERR_PVS already set Limp home active
This DTC can distinguish the circuit’s high voltage. During the normal operation, the output voltages of the APPsensors must lie within a permitted range.
V_PVS_1 > 4.8096 V LV_ERR_PVS_H_1 = 1 Failure counter max = 12 P2123 = Active
Activation: IGN =1 Deactivation: IGN =0 LV_ERR_PVS already set Limp home active
Recurrence Rate 25 ms
M/1
This DTC detects the rationality between TP 1 and 2. Test performs a comparison between TP 1 voltage vs. TP 2 in order to detect relative deviation of the two TP voltages. (calculated from the maximum value of the both channels).
I TP ratio check calculation I > 0.2688 V
Activation: IGN =1. The errors bits, Failure-counters and other variables or bits are initialised
Recurrence Rate 25 ms
M/1
P2122 = Active
Limp home – calibrateble TQ reduction with pedal limitation
Failure counter max = 12 (.3s) Errors is set and P 2135 = Active Limp home – RPM limitation If we have that : MAF_Measured < 519 mg/stk
2004file8.doc
Deactivation: IGN =0 or the setting conditions are not fulfilled anymore. LV_ERR_TP already set Limp home active
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Recurrence Rate 25 ms
M/1
Recurrence Rate 25 ms
M/1
Recurrence Rate 25 ms
M/1
We proceed with calculation of MAF_SUB_X (Maf,IAT,ECT,Baro) and Deviation TP_MAF_DIF_X ( for each channel) used for determining which channel is faulty) Accelerator Pedal Position (APP) Sensor 1-2 Correlation
P 2138
Accelerator Pedal Position (APP) Sensor 2 Circuit Low Voltage
P2127
Accelerator Pedal Position (APP) Sensor 2 Circuit High Voltage
P2128
The objective of the Ratio Check is to detect a relative deviation of the two APP voltages.
Ratio check calculation of CH 1 & 2 V Diff > .32V Hysteresis ( calculated form the max values of the channels)
If the voltages differ more than a permitted Hysteresis, the fault code will be set during debouncing.
Ratio deviation errors is set (not able to detect the faulty channel)
This DTC can distinguish the circuit’s low voltage. During the normal operation, the output voltages of the APP-sensors must lie within a permitted range.
Voltage PVS_2 < 0.1465 V P2127 = Active Failure counter max = 12
Activation: IGN =1. The errors bits, Failure-counters and other variables or bits are initialised
Limp home – calibratible TQ reduction with pedal limitation
Deactivation: IGN =0 or the setting conditions are not fulfilled anymore. LV_ERR_PVS already set Limp home active
Voltage PVS_2 > 4.5898 Failure counter max = 12
Activation: IGN =1. The errors bits, Failure-counters and other variables or bits are initialised
This DTC can distinguish the circuit’s high voltage. During normal operation, the output voltages of the APP-sensors must lie within a permitted range.
Activation: IGN = 1. Deactivation: IGN = 0 -
LV_ERR_PVS already set Limp home active
Failure counter max = 12 P 2138 = Active Limp home – calibratible TQ reduction with pedal limitation
P2128 = Active Limp home –calibrateble TQ reduction with pedal limitation
2004file8.doc
Deactivation: IGN =0 or the setting conditions are not fulfilled anymore. LV_ERR_PVS already set Limp home active
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
Throttle position start check 1
P 2176
MONITOR STRATEGY DESCRIPTION
This diagnostic checks the following conditions First limp home check and Adaptation of the Limp Home Position Limp home spring test Second limp home check
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
Voltage_TP_1,2 compared to adaptive Voltages are (.249 V) time > (.05 s) then conditions not met. New adaptation is necessary if engine start cancelled First Limp home check must be fulfilled. The actual value of the throttle position has to reach the setpoint 11.99° within the hysteresis(1.86°/5ms) within a limit maximum of time (.2 S). Limp home-Engine speed limitation.
SECONDARY PARAMETERS AND ENABLE CONDITIONS
Activation: IGN =1 Each step must be met in order to continue on to the next step
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
Recurrence Rate 5 ms
M/1
Time lenght < 25 s Recurrence Rate : 1 per trip
M\2
Deactivation: IGN=0 TP adaptation request Limp home active Ignition and Injection are active
Limp home spring test must be fulfilled. TP V 1,2 compared to adaptive Voltages are > .249 V for time .05 s then conditions not met. New adaptation is necessary if engine start cancelled or else Limp home-Engine speed.
Evaporative Emission (EVAP) System (≤ 1mm Leak Detected)
P 0442
Leak detection based on decay method. Vacuum is generated in the fuel tank system by means of canister purge valve opening and canister vent valve closed, then the purge is stopped and the leak size is calculated from the variation of the differential pressure (tank, atmosphere). The leak size calculated is compared to a threshold.
A- 1mm detection Leak diameter calculated > 0.664
2004file8.doc
-Time after start ≥ 600 s -Barometric Pressure ≥ 700 hPa -ECT ≥ 75 degre C -IAT ≥ 3 degre C -Minimum time purging in part load before monitoring canister load >= 0.5 time = 50 s canister load < 0.5 time = 30 s -Charcoal Canister Load ≤ 1.5 -17 hPa < DTP < 1 hPa -Vehicle Speed < 8 km/h -Differential tank pressure fluctuation detected at least once before monitoring active -Service request not active (canister purge valve, venting valve) -Lambda Close loop active The monitoring is inhibited if any of the following errors are present : -DTP errors -Vehicle speed errors -Canister purge valve errors -Venting valve errors
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
-TP errors -MAF errors -IAT errors -ECT errors -Upstream lambda sensor errors -Injector errors -Misfiring
Evaporative Emission (EVAP) Vent System Performance ( Stuck Closed )
P 0446
Fuel Tank Pressure – Sensor (DTP) Performance
P 0451
During normal in-use conditions the differential pressure (tank, atmosphere) in the fuel tank system has to be greater than a threshold
The DTP sensor performance is performed from two ways : A- Constant sensor value detection. From engine start and for calibrated time duration the variation of the DTP signal has to be greater than a calibrated threshold. B- Noisy sensor value detection. At idle the DTP signal value variations have to be smaller than 2 thresholds (peak/peak, slope).
DTP value < -17 hPa Failure counter : Increment = 1 Max counter = 5 This diagnostic disables the followings : -EVAP emission control -EVAP monitoring -DTP diagnosis
Engine stop phase not active Engine start phase not active Canister purge active The monitoring is inhibited if any of the following errors are present : -DTP errors -Venting valve electrical errors
Recurrence Rate = 50ms
M/2
ADifferential tank pressure variation < 0.02v
AEngine started -Vehicle speed variation > 45 km/h -Canister flow variation > 0.01 kg/h -Differential tank pressure > 0.02V
A Time lenght < 5 Sec Frequency = 50 ms
M/2
The monitoring is inhibited if any of the following errors are present : -DTP errors (noisy, electrical) -Vehicle speed errors -Canister purge valve errors
B Time lenght < 5 Sec
Failure counter : Increment = 1 Max counter = 30 This diagnostic disables the followings : -DTP diagnosis -EVAP monitoring -Venting valve stuck close diagnosis B Differential tank pressure sensor variation > 0.5 hPa Differential tank pressure sensor slope > 1 hPa/s Failure counter : Increment = 1 Max counter = 30 This diagnostic disables the followings : -DTP diagnosis
2004file8.doc
B -Idle speed active -Differential tank pressure fluctuation detected at least once before idle speed active The monitoring is inhibited if any of the following errors are present : -DTP errors (constant, electrical) -Vehicle speed errors -Canister purge valve errors -Venting valve errors -MAF errors
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
-EVAP monitoring -Venting valve stuck close diagnosis
Fuel Tank Pressure – Sensor (DTP) Electrical Diagnosis
P 0452 FTP Circuit Low Volts P 0453 FTP Circuit High Volts
The DTP sensor electrical diagnosis is performed by two ways, A- Short to ground B- Short to battery or line break
ADifferential tank pressure variation < 0.02v
SECONDARY PARAMETERS AND ENABLE CONDITIONS
-TP errors -IAT errors -ECT errors -Upstream lambda sensor errors -FSD -Injector errors -Misfiring Engine started
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
All the time when engine runs. Frequency = 50 ms
M/2
All the time when engine runs. Frequency = 50 ms
N\1
Failure counter : Increment = 1 Max counter = 30 This diagnostic disables the followings : -DTP diagnosis -EVAP monitoring -Venting valve stuck close diagnosis B Differential tank pressure sensor variation > 0.5 hPa Differential tank pressure sensor slope > 1 hPa/s Failure counter : Increment = 1 Max counter = 30
Fuel Tank Pressure – Sensor (DTP) Intermittent
P 0454
The DTP sensor intermittent diagnosis is performed by two ways, C- Short to ground D- Short to battery or line break
This diagnostic disables the followings : -DTP diagnosis -EVAP monitoring -Venting valve stuck close diagnosis ADifferential tank pressure variation < 0.049v B Differential tank pressure sensor > 4.95v Failure counter : Increment = 1 Max counter = 16 This diagnostic disables the followings : -DTP diagnosis -EVAP monitoring -Venting valve stuck close diagnosis
2004file8.doc
Engine started
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
Evaporative Emission (EVAP) System (Large Leak Detected)
P 0455
MONITOR STRATEGY DESCRIPTION
The large leak detection is performed from two ways : A-Leak detection based on decay method. Vacuum is generated in the fuel tank system by means of canister purge valve opening and canister vent valve closed, then the purge is stopped and the leak size is calculated from the variation of the differential pressure (tank, atmosphere). The leak size calculated is compared to a threshold.
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
AEvacuation time during monitoring > 17 s DTP variation during evacuation phase > -6 hPa
ASame than Evaporative Emission (EVAP) System (≤ 1mm Leak Detected)
A Time lenght < 26.25 Recurrence Rate = 1 per trip
M\2
BDTP average variation < 6 hPa Time evacuation ≥ 8 s Number check repetition with consecutive failure in a row>= 2
B-Leak detection based on fuel cap missing strategy. Time counter is set then vacuum is generated in the fuel tank system. Vacuum level is compared to a threshold. This vacuum threshold has to be reached as long as the time counter is smaller than a threshold. This strategy is repeated for a defined number before to set the final errors
The monitoring is inhibited if any of the following errors are present : Same than Evaporative Emission (EVAP) System (≤ 1mm Leak Detected) BFrom Engine off Time after start < 500 s (120 s) Or, From Engine On -Last idle speed time duration > 10 s (60 s) -Time from last idle speed to start the monitoring =< 100 s
B Time lenght < 26.25 s
General conditions -Idle speed not active -Leak detection monitoring conditions not active -Time elapsed from the last check > 50 s - Limited Vehicle speed variation < 12 km - Minimum vehicle speed > 12km/h Limited barometric pressure variation < 8 hPa -Canister purge valve flow > 0.5 kg/h The monitoring is inhibited if any of the following errors are present : Same than Evaporative Emission (EVAP) System (≤ 1mm Leak Detected)
Evaporative Emission (EVAP) Vent System Performance ( Stuck Open )
P0455
Evaporative Emission (EVAP) System Flow
P 0496
The opening check is done during the EVAP monitoring. When the evacuation phase is over the differential pressure in the tank has to be lower than a threshold
-Evacuation time duration > 17 s -DTP variation evacuation phase < -6 hPa Failure counter : Increment = 1 Max counter = 1 This diagnostic disables the followings : -DTP diagnosis -EVAP monitoring
The Canister valve opening check is done during the EVAP monitoring. At the beginning of
Time elapsed in Vapor generation phase < 5s DTP variation > - 5.5 hPa
2004file8.doc
Leak detection monitoring in evacuation phase
Recurrence Rate = 1 per trip
M/2
Frequency = 1 per trip
M/2
The monitoring is inhibited if any of the following errors are present : Same than Evaporative Emission (EVAP) System (≤ 1mm Leak Detected)
Leak detection monitoring in Vapor generation phase
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
During NonPurge ( Stuck Open )
MONITOR STRATEGY DESCRIPTION
the leak monitoring the vapor level is measured by closing the canister purge valve and the canister vent valve. While the vapor level measurement the differential pressure inside the tank has to be greater than a threshold, otherwise a failure is detected
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
SECONDARY PARAMETERS AND ENABLE CONDITIONS
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
IGN = ON Engine = Running
Recurrence Rate 12.5 ms
N/1
IGN = ON
Recurrence Rate 12.5 ms
N/1
IGN = ON
Recurrence Rate 12.5 ms
N/1
IGN = ON
Recurrence Rate 12.5 ms
M/1
The monitoring is inhibited if any of the following errors are present : Same than Evaporative Emission (EVAP) System (≤ 1mm Leak Detected)
Failure counter : Increment = 1 Max counter = 7 This diagnostic disables the followings : -Canister Purge valve in minimum mode -Lambda diagnosis – upstream sensor -Lambda diagnosis – downstream sensor -Lambda adaptation -DTP sensor diagnosis -Idle speed adaptation -FSD
Lost Communication with TCS
U 1040
Electrical Class 2 Failure
U1300 U1301
Can Bus Communication Malfunction
U 0001
Lost Communications With Transmission Control System
U 0101
Communication is performed internal to the ECM
Loss of Module on CAN bus
U 0002
Adaptive cruise DTC set only if adaptive cruise is present. (295 only)
Detection of CAN bus is internal to the ECU Failure counter > 16 (3.2s)
IGN = ON
Recurrence Rate 12.5 ms
N/1
Communication is performed internal to the ECM
Detection of BCM is internal to the ECU Failure counter > 16 (3.2s)
IGN = ON
Recurrence Rate 12.5 ms
N/1
Communication is performed internal to the ECM
Detection is internal to the ECU Failure counter > 16 (3.2s)
IGN = ON
Recurrence Rate 12.5 ms
N/1
Lost Communications With BCM System Lost Communications With Brake/Traction Control System
U 0140
U 0121
This diagnostic will detect a failure on the Class 2 Data link connection to the TCS (265 only) This diagnostic will detect an electrical open, short to ground, or short to battery voltage (265 Only) This diagnostic will detect a failure on the Can Bus Data link connection
Detection of Class 2 Failure is internal to the ECM. Failure Ctr. > 16 (3.2s) P 1040 = active Detection of Electrical Class 2 Failure is internal to the ECM. Failure Ctr. > 16 (3.2s) P 1300 = active P 1301 = active Detection of Can Bus Failure is internal to the ECM. Failure Ctr. > 16 (3.2s) P 0001 = active Detection of Class 2 Failure is internal to the ECM. Failure Ctr. > 16 (3.2s)
(215 Only)
2004file8.doc
2004 4.6L (LH2) ENGINE DIAGNOSTIC PARAMETERS 2004file8.doc SENSED PARAMETER
FAULT CODE
Lost Communications With Powertrain Control (ACC) System Lost Data from DIM
U 0104
Communication is performed internal to the ECM (215 Only)
Detection is internal to the ECU Failure counter > 16 (3.2s)
U 1064
265 Only
Lost Data from C
U 1153
Lost Data from VTD
U 1192
MONITOR STRATEGY DESCRIPTION
MALFUNCTION CRITERIA AND THRESHOLD VALUE(S)
TIME LENGTH AND FREQUENCY
MIL TYPE & Trips
IGN = ON
Recurrence Rate 12.5 ms
N/1
Detection is internal to the ECU Failure counter > 16 (3.2s)
IGN = ON
Recurrence Rate 12.5 ms
N/1
265 Only
Detection is internal to the ECU Failure counter > 16 (3.2s)
IGN = ON
Recurrence Rate 12.5 ms
N/1
265 Only
Detection is internal to the ECU Failure counter > 16 (3.2s)
IGN = ON
Recurrence Rate 12.5 ms
N/1
2004file8.doc
SECONDARY PARAMETERS AND ENABLE CONDITIONS
Compilador Alexander Abrigo /Trabajo Final de Grado Previo a la obtención del título de Ingeniero Mecánico Automotriz. UPS - 2007 Los términos siguientes y sus definiciones son relacionados a sistemas OBD1. A - Amperios A/C - Aire acondicionado A/CL BIMET - Sensor bimetálico del purificador de aire A/CL DV - Ducto del purificador de aire y motor de vacío de la válvula A/D - Convertidor analógico-digital A/F - Relación aire-combustible A/T - Transmisión automática A4R70W - Transmisión automática con sobremarcha de gran diferencia entre los engranes AAC - Válvula auxiliar de control de aire AAV - Válvula contra combustión retardada (Mazda) ABCV - Válvula de control de purga de aire (Ford) ABS - Sistema de frenos antibloqueo ABSV - Válvula solenoidal de derivación de aire (Mazda) ABV - Válvula de derivación de aire AC - Corriente alterna ACC - Embrague del aire acondicionado ACC - Control climático automático ACCS - Interruptor del embrague de ciclaje del aire acondicionado ACD - Interruptor de demanda del aire acondicionado ACON - Señal de encendido del aire acondicionado A - Señal de presión del aire acondicionado
ASW - Interruptor de presión del aire acondicionado ACR - Relé del aire acondicionado ACR4 - Aire acondicionado: refrigerante, recuperación, reciclaje, recarga ACT - Temperatura de carga del aire ACV - Válvula de control de aire ADU - Unidad analógica-digital AFC - Control de flujo de aire AFM - Medidor de flujo de aire AFR - Relación aire-combustible AFS - Medidor de flujo de aire (Mitsubishi) AIR - Sistema secundario de inyección de aire AIRB - Solenoide de derivación de aire AIRD - Solenoide derivador de aire AIS - Sistema de inyección de aire (Chrysler) AIS - Velocidad de marcha lenta AIV - Válvula de inyección de aire ALC - Control automático de nivel ALCL - Enlace de comunicaciones de la línea de montaje (GM) ALDL - Enlace de datos de la línea de montaje ALT - Alternador (reemplazado por GEN) AM1 - Control de aire 1, derivador de aire AM2 - Control de aire 2, derivador de aire AMB - Ambiente AOD - Sobremarcha automática AODE - Transmisión electrónica de sobremarcha automática AODE-W - Transmisión automática con sobremarcha de gran diferencia entre los engranes AP - Pedal del acelerador
APC - Control automático de rendimiento APS - Sensor de presión atmosférica (Mazda) APS - Sensor de presión absoluta (GM) APT - Aceleración parcial ajustable ARC - Control automático de marcha ARS - Sistema automático de sujeción ASARC - Suspensión de aire automática - Control automático de marcha ASD - Relé de apagado automático ASDM - Módulo de diagnóstico de bolsas de aire (Chrysler) ASE - Excelencia del servicio automotor ASM - Modo de simulación de aceleración ASR - Regulación de desplazamiento de aceleración ATC - Control automático de temperatura ATDC - Después del punto muerto superior ATF - Líquido de transmisión automática ATM - Modo de prueba de accionador ATS - Sensor de temperatura del aire (Chrysler) ATX - Transeje automático AVOM - Voltímetro/óhmetro analógico AWD - Tracción en todas las ruedas AWD - Tracción en las cuatro ruedas AWG - American Wire Gage (calibre) AX4S - Transmisión automática con 4 velocidades AXOD - Sobremarcha automática - transeje AXOD-E - Sobremarcha automática - Transeje - Controlada electrónicamente B/MAP - Presión absoluta barométrica/del múltiple B+ - Voltaje positivo de batería
BAC - Válvula de control de derivación de aire BARO - Presión barométrica BAT - Batería BC - Control del ventilador BCM - Módulo de control del chasis BHP - Potencia (HP) de frenos BHS - Sensor bimetálico de calor (Ford) BID - Descarga inductiva sin cortacircuitos (AMC) BLM - Block Learn Multiplier (reemplazado por LT FUEL TRIM) BMAP - Sensor de presión absoluta del múltiple/Barométrica (Ford) BOB - Caja de para pruebas BOO - Interruptor de encendido/apagado de freno BP - Presión barométrica BPA - Derivación mecánica de aire BPCSV - Derivación de válvula solenoidal de control BPP - Interruptor de posición del pedal de freno BPS - Sensor de retropresión BPT - Transductor de retropresión BPV - Válvula de derivación (Ford) BPW - Ancho de pulso de freno BSV - Supresor de explosiones (Ford) BTDC - Antes de punto muerto superior BTS - Sensor de temperatura de la batería BTSI - Interbloqueo de cambio de transmisión de freno Btu - Unidad térmica británica BUS N - Bus negativo BUS P - Bus positivo BV - Puerto de ventilación de la cámara de flotación del carburador (Ford)
BVSV - Válvula de control de ventilación bimetálica BVT - Sistema de transducción de retropresión variable (Ford) C - Carbono C - Celsius (centígrados) C.A.R.B. - California Air Resource Board C3 - Sistema de control de comando computarizado (GM) C3I - Encendido por bobina controlado por computadora C4 - Sistema convertidor catalítico controlado por computadora (GM) CAC - Cargar enfriador de aire CANP - Solenoide de purga del filtro de carbón activo EVAP CARB - Carburador CAS - Sistema de aire limpio CAS - Sensor de ángulo del cigüeñal CASE - Error de sensor de ángulo del cigüeñal CBD - Distribuidor con cámara cerrada CC - convertidor catalítico CC - Control de crucero CC - Centímetros cúbicos CC - Control de clima CCC - Control de embrague del convertidor CCC - Sistema de control de comando por computadora (GM) CCD - Permanencia controlada por computadora CCD - Detección de colisión de Chrysler CCDIC - Centro de información sobre control climático para el conductor CCEI - Mejoramiento de marcha lenta controlado por refrigerante (Chrysler) CCEV - Interruptor de vacío del motor controlado por refrigerante (Chrysler) CCM - Módulo central de control
CCM - Monitor continuo de componentes CCNT, DTC CCNT - Código de conteo CCO - Anulador del embrague del convertidor CCOT - Sistema de refrigeración de embrague alternante-tubo de orificio C - de control de climatización C - Purga controlada de cámara (GM) CCRM - Módulo de relé de control constante CCS - Solenoide de embrague de marcha con motor desembragado CCSP - Almacenamiento en cartucho de carbono/Purga CCV - Válvula de control del cartucho CDCV - Válvula de cierre de drenaje del cartucho CDI - Ignición de descarga de capacitor (AMC) CDR - Lectura de diagnóstico de Chrysler CDRV - Válvula reguladora de depresión del cárter CE - Extremo del conmutador CEAB - Purga de aire para el motor en frío CEC - Sistema de control de emisiones del cárter (Honda) CECU - Unidad central de control electrónico (Nissan) CEL - Revisar luz del motor CER - Varilla de enriquecimiento en frío (Ford) CES - Interruptor de activación del embrague CESS - Interruptor sensor de motor frío CFC - Clorofluorocarbonos CFI - Inyección central de combustible CFI - Inyección continua de combustible CFM - Pies cúbicos por minuto CFV - Venturi de flujo crítico CHM - Calentador de mezcla en frío
CID - Señal de identificación de cilindro CID - Desplazamiento en pulgadas cúbicas CIS - Sistema de inyección continua (Bosch) CKP - Sensor de posición del cigüeñal CKP REF - Referencia de posición del cigüeñal CKT - Circuito CL - Circuito cerrado CLC - Embrague de bloqueo del convertidor (reemplazado por TCC) CLCC - Control del carburador en circuito cerrado CLNT - Refrigerante CLV - Valor de carga calculado CMFI - Inyección central de combustible multi-puerto CMP - Sensor de posición del cigüeñal CMP REF - Referencia de posición del cigüeñal CO - Monóxido de carbono CO2 - Dióxido de carbono COC - Catalizador de oxidación convencional (Ford) COP - Encendido electrónico con una bobina sobre cada bujía - Purga de cartucho (GM) - Sensor de posición del cigüeñal (Ford) A - Aseguramiento de posición de conector I - Inyección de combustible en puerto central P - Posición del pedal del embrague S - Fuente central de energía SOV - Válvula de cierre de purga de cartucho (Ford) U - Unidad central de procesamiento CRK - Señal de rotación
CRT - Tubo de rayos catódicos CSC - Control de encendido con refrigerante (Ford) CSE GND - Tierra de caja PCM CSSA - Sistema de avance de encendido en frío (Ford) CSSH - Sistema de retención de encendido en frío (Ford) CTAV - Interruptor de vacío accionado por baja temperatura (Ford) CTM - Módulo temporizador central CTO - Salida limpia del tacómetro CTO - Anulación de temperatura del refrigerante CTOX - Oxidador continuo CTP - Posición cerrada del acelerador CTS - Interruptor de temperatura de carga (Chrysler) CTS - Sensor de temperatura del refrigerante CTVS - Interruptor de vacío para detectar acelerador cerrado CV - Velocidad constante CV - Válvula de control CVCC - Sistema de combustión controlada con vórtice compuesto (Honda) CVR - Regulador de vacío de control (Ford) CVS - Muestreador de volumen constante CWM-Ford - Modulador para tiempo frío (Ford) DAB - Bus de rios retardados dB - Decibeles DC - Ciclo de trabajo DC - Corriente continua DCISCA - Accionador de velocidad de marcha lenta, motor de corriente continua DCL - Enlace de comunicaciones de datos DDL - Enlace de diagnóstico de datos
DE - Extremo de transmisión DEC - Controlador electrónico digital DEFI - Inyección de combustible digital electrónica (Cadillac) DEPS - Sensor digital de posición del motor DERM - Módulo de reserva de energía de diagnóstico DFCO - Modo de corte de combustible durante desaceleración DFI - Inyección directa de combustible DFS - Cierre de combustible durante desaceleración DI - Encendido directo DI - Encendido del distribuidor (Sistema) DIC - Centro de información para el conductor DICM - Módulo de control de ignición del distribuidor DIS - Encendido directo (encendido durante la carrera de escape) DLC - Conector de enlace de datos (OBD) DM - Motor de arranque DMCM - Módulo de control de motor de arranque DMCT - Temperatura del refrigerante del motor de arranque DMPI Module - Módulo inversor de potencia del motor de arranque DMS - Sistema modulador del distribuidor DOHC - Dos árboles de leva en cabeza DOL - Línea de salida de datos a IPC DPC - Control dinámico de presión DPFE - Retroalimentación de presión diferencial DPI - Block Learn Multiplier (reemplazado por LT FUEL TRIM) DRB II - Caja de lectura de diagnóstico (Chrysler) DRCV - Válvula de control de retardo de distribuidor DRL - Luces diurnas DSO - Osciloscopio de almacenamiento digital
DSR - Subrutina de diagnóstico de Ford DSS - Solenoide de descenso de marcha DSSA - Dual Signal Spark Advance (Ford) DSV - Válvula solenoidal de desaceleración DTC - Código de diagnóstico de problemas DTC FRZ - Imagen fija de código de diagnóstico de problemas DTM - Modo de prueba de diagnóstico DTVS - Interruptor de vacío de doble temperatura DV - Válvula de retardo DVAC - Válvula de control de avance de vacío del distribuidor DVDSV - Válvula de retardo de vacío al diferencial y válvula separadora DVDV - Válvula de retardo de vacío al distribuidor DVOM - Voltímetro-óhmetro digital DV-TW - Válvula relé bidireccional DVVV - Válvula de ventilación de vacío del distribuidor E4OD - Sobremarcha electrónica de 4 velocidades EAC - Control electrónico de aire (reemplazado por AIR) EACV - Válvula de control electrónico del aire EAIR - Inyección de aire secundaria electrónica EBCM - Módulo electrónico de control de frenos EBP - Retropresión de escape EBTCM - Módulo electrónico de control de frenos EC - Control del motor ECA - Conjunto de control electrónico (Ford) ECC - Control electrónico de climatización ECCS - Sistema de control electrónico concentrado ECI - Compresor extendido en marcha lenta
ECIT - Sincronización electrónica de control de ignición ECL - Nivel de refrigerante del motor ECM - Módulo de control electrónico/del motor ECS - Sistema de control de evaporación (Chrysler) ECS - Sistema de control de emisiones ECT - Temperatura del refrigerante del motor ECU - Unidad de control electrónico EDF - Electro-Drive Fan EDIS - Sistema electrónico de encendido directo (reemplazado por EI) EDM - Modulador electrónico del distribuidor (Ford) EEC - Control electrónico del motor (Ford) EEC-I - Control de sincronización de ignición EEC-II - Control de sincronización de ignición y suministro de combustible a través de un sistema de carburador alimentado EEC-III - Control de sincronización de ignición y suministro de combustible a través de un sistema de inyección central EEC-IV - Control de sincronización de ignición y suministro de combustible a través de un sistema de inyección electrónico EECS - Sistema de control de emisiones evaporativo EEGR - EGR electrónico (Solenoide) EEGR Monitor - Prueba de EGR electrónico EEPROM - Memoria programable sólo de lectura borrable electrónicamente EESS - Sistema de emisiones evaporativo (Ford) EEVIR - Valores ecualizados del evaporador en el receptor EFC - Control electrónico de combustible EFC - Carburador con retroalimentación electrónica (Chrysler) EFCA - Conjunto de control electrónico de combustible (Ford) EFE - Evaporación anticipada de combustible EFI - Inyección electrónica de combustible
EFT - Temperatura del combustible en el motor EFV - Evaporación anticipada de combustible EGC - Válvula de control de gases de escape (Ford) EGO - Sensor de oxígeno en gases de escape (Ford) EGOR - Retorno de señal de EGO (Ford) EGR - Recirculación de gases de escape EGR Monitor - Prueba recirculación de gases de escape (EGR) con OBDII EGR TVV - Válvula de vacío para recirculación de gases de escape EGRB - Sensor de intensificación de EGR EGRC - Solenoide de control de EGR (Ford) EGRC-BPT - Transductor de retropresión de control de EGR EGRPS - Sensor de posición de válvula de EGR (Mazda) EGRT - Temperatura de recirculación de gases de escape EGRV - Solenoide de ventilación de recirculación de gases de escape EGTS - Interruptor de temperatura de gases de escape (reemplazado pro EGRT) EH - Electro-Hidráulico EI - Sistema integrado de ignición electrónica EICV - Válvula de control electrónico de marcha lenta ELB - Electronic Lean Burn (Chrysler) ELC - Control electrónico de nivel ELCD - Dispositivo de control de pérdidas por evaporación EM - Modificación del motor EMB - Frenos electromagnéticos EMF - Fuerza electromotriz (voltaje) EMI - Interferencia electromagnética EMR - Retardo del módulo electrónico EN - Generador (Alternador)
EOBD - Diagnóstico a bordo europeo EOP - Presión del aceite del motor EOS - Sensor de oxígeno en escape EOT - Temperatura del aceite del motor EP - Presión del escape EPA - Agencia de Protección Ambiental (EPA) EPC - Control electrónico de presión EPOS - Sensor de posición de válvula EGR (Ford) EPROM - Memoria programable sólo de lectura, borrable EPT - Transductor de presión de EGR (reemplazado por PFE) ESA - Avance de encendido electrónico (Chrysler) ESC - Sistema electrónico de control de encendido (Ford) ESD - Descarga electrostática ESS - Selección de encendido electrónico (Cadillac) EST - Sincronización de encendido electrónico ETC - Control electrónico de temperatura ETP - Transductor de presión de EGR ETR - Receptor con sintonía electrónica EVAP - Sistema evaporativo de emisiones EVAP - Purga del cartucho evaporativo EVAP CV - Ventilación del cartucho del sistema evaporativo de emisiones EVIC - Centro de información electrónica del vehículo EVO - Orificio electrónico del vehículo EVP - Sensor de posición de válvula de EGR EVR - Regulador de vacío de EGR EXH - Escape F4WD - Tracción en las cuatro ruedas a tiempo completo FAN - Ventilador de enfriamiento (baja o alta velocidad)
FBC - Carburador de retroalimentación FBCA - Accionador del carburador de retroalimentación (Ford) FC - Control del ventilador FCA - Conjunto de control de combustible (Chrysler) FCS - Solenoide de control de combustible (Ford) FDBK - Retroalimentación FDC - Válvula de desaceleración de combustible (Ford) FDV - Válvula de desaceleración de combustible (Ford) FEEPROM - Memoria flash programable sólo de lectura, electrónicamente borrable FEPROM - Memoria flash programable sólo de lectura, borrable FF - Combustible flexible FI - Inyector de combustible FIC - Control de marcha lenta rápida FICD - Dispositivo de control de marcha lenta rápida FIPL - Palanca de la bomba de inyección de combustible FLC - Convertidor torsional de fluído con dispositivo de bloqueo FLS - Sensor de nivel de líquido (GM) FM - Programa del motor del ventilador en PCM FMEM - Manejo del efecto del modo de falla FMVSS - Normas federales de seguridad para vehículos automotores FOM - Modo de operación con problemas (Limp Mode) FP - Relé de bomba de combustible (Ford) FP - Bomba de combustible FPM - Monitor de bomba de combustible (en PCM) FPRC - Control del regulador de bomba de combustible FRC - Forzado FRP - Presión del distribuidor de combustible
FRT - Temperatura del distribuidor de combustible FRZ - Imagen detenida FT - Ajuste de combustible FTL - Sensor de nivel del tanque de combustible FTO - Salida filtrada del tacómetro FTP - Presión del tanque de combustible FTT - Temperatura del tanque de combustible FWD - Tracción delantera g/sec - Gramos por segundo GA - Medidor GCM - Módulo de control del regulador GCW - Peso bruto combinado GDC - Centro de datos de combustible GDI - Inyección directa de gasolina GEM - Módulo electrónico genérico GEN - Generador (Alternador) GND - Conexión eléctrica a tierra GOOSE - Apertura/cierre breve del acelerador GPM - Gramos por milla GPS - Sensor de presión del regulador GST - Herramienta genérica de escaneo GVW - Peso bruto del vehículo H - Hidrógeno H/CMPR - Alta compresión H2O - Agua HAC - Compensador de gran altitud HAIS - Sistema de isión de aire calentado (Chrysler)
HBV - Voltaje del soplador del calentador HC - Hidrocarburos HCDS - Alta velocidad del tambor del embrague HCV - Hidrocarburo (Ford) HCV - Válvula de control del calor de escape (Ford) HD - Uso pesado HDC - Enfriamiento de uso pesado HDR-CKP - Sensor CKP de alta velocidad de datos HEGO - Sensor de oxígeno en gases de escape calentados HEI - Ignición de alta energía (GM) HFC - Control del ventilador de alta (velocidad) HFP - Control de bomba de combustible alta (relé) Hg - Mercurio HIC - Válvula compensadora de marcha lenta en caliente (Ford) HLOS - Sistema de operaciones limitado por el hardware HO - Alto rendimiento HO2S - Sensor de oxígeno calentado HO2S-1-1 - Señal del Banco Uno, Sensor Uno HO2S-1-2 - Señal del Banco Uno, Sensor Dos HO2S-1-3 - Señal del Banco Uno, Sensor Tres HO2S-2-1 - Señal del Banco Dos, Sensor Uno HO2S-2-2 - Señal del Banco Dos, Sensor Dos hp - Potencia en HP HPC - Límite de alta presión HPL - Líquido a alta presión HPS - Sistema de alto rendimiento HPV - Vapor a alta presión HSC - Combustión con alto nivel de turbulencia
HT - Alta tensión HUD - Visualización digital de datos HVAC - Calentador, ventilación y aire acondicionado HVACM - Módulo de calentador-ventilación-aire acondicionado HVS - Interruptor de alto voltaje Hz - Hertz I/M - Inspección y mantenimiento I/O - Entrada/Salida I/P - de instrumentos IA - isión de aire IAC - Control de aire para marcha lenta (motor o solenoide) IACV - Válvula de control para marcha lenta IAS - Solenoide de isión de aire (Ford) IAT - Temperatura de entrada del aire IBP - Retropresión integral IC - Circuito integrado IC - Control de encendido ICM - Módulo de control de encendido I - Presión de control de inyección ICS - Solenoide de control para marcha lenta (GM) ID - Diámetro interior IDI - Encendido directo integrado IDL - Interruptor de posición para marcha lenta IDM - Módulo de diagnóstico de encendido IDM - Módulo accionador del inyector IFI - Inyección de combustible indirecta IFS - Interruptor de inercia de combustible
IGN - Encendido IGN ADV - Avance de encendido IGN GND - Tierra de encendido ILC - Compensador de carga para marcha lenta IMA - Ajustador de mezcla para marcha lenta IMRC - Control del múltiple de isión IMS - Señal de módulo de encendido IMS - Sensor de millaje inferido (Ford) IMT - sincronización del múltiple de isión INJ 1 to INJ 10 - Inyectores de combustible 1 a 10 INT - Integrador (reemplazado por ST FUEL TRIM) IPC - Conjunto del de instrumentos IPR - Regulador de presión de inyectores IRCM - Módulo de control por relé integrado ISA - Accionador de velocidad de marcha lenta ISC - Control de velocidad de marcha lenta ISO - International Standard of Organization ISS - Velocidad del eje de entrada ITA - Ajuste de sincronización de encendido ITCS - Sistema de control de sincronización de encendido (Honda) ITS - Interruptor de seguimiento para marcha lenta IVS - Interruptor de validación de marcha lenta IVSC - Control integrado de velocidad del vehículo IVV - Válvula de vacío para marcha lenta (Ford) JAS - Sistema de chorros de aire (Mitsubishi) JSV - Válvula solenoidal de mezcla KAM - Memoria permanente (Keep Alive Memory) KAPWR - Corriente directa de la batería
KD - Cambio a marcha inferior KDLH - Kickdown Low Hold Kg/cm2 - Kilogramos/ Centímetros cúbicos kHz - Kilohertz Km - Kilómetros KOEC - Llave encendida, motor girando KOEO - Llave encendida, motor apagado KOER - Llave encendida, motor funcionando KPA - Kilopascales KS - Sensor de golpeteo KSM - Módulo sensor de golpeteo L - Litros L4 - Motor de cuatro cilindros en línea LAMBSE - Ajuste de combustible a corto plazo LCD - Pantalla de cristal líquido LED - Diodo emisor de luz LFC - Control bajo del ventilador LFP - Control de la bomba de combustible a baja velocidad LHD - Dirección a la izquierda LOAD - Valor de carga calculado LOC - Mini convertidor catalítico de oxidación LONGFT - Ajuste de combustible a largo plazo LOOP - Estado del circuito de operación del motor LOS - Estrategia de operación limitada LPG - Gas de petróleo licuado LSS - Solenoide de desplazamiento lineal LTFT - Ajuste de combustible a largo plazo
LTS - Interruptor de bajo refrigerante LUS - Solenoide de bloqueo LV8 - Cargar variable LWB - Base de ruedas larga M/C - Control de mezcla M/T - Transmisión manual MAF - Sensor de masa de flujo de aire MAF RTN - Tierra del sensor de flujo de masa de aire MAP - Sensor de presión absoluta del múltiple MAS - Tornillo de ajuste de mezcla MAT - Temperatura de aire del múltiple MC - Control de mezcla MCS - Solenoide de control de mezcla (GM) MCT - Sensor de temperatura de carga del múltiple (Ford) MCU - Unidad de control del microprocesador (Ford) MCV - Válvula de control del múltiple (Ford) MDP - Presión diferencial del múltiple MECS - Sistema electrónico de control de Mazda MEMCAL - Calibración de memoria MFI - Inyección de combustible multipuerto MIC - Grupo de instrumentos mecánicos MIL - Lámpara indicadora de falla de funcionamiento MISAR - Detección microprocesada y regulación automática (GM) MLP - Posición de palanca manual MLUS - Solenoide de bloqueo modulado o su circuito de control (Ford) MLVLPS - Posición de palanca de válvula manual MPFI - Inyección de combustible multipuerto MPG - Millas por galón
MPH - Millas por hora MPI - Inyección multipuerto mS or ms - Milisegundo MSFF - Millas desde primera falla MSLF - Millas desde última falla MST - Temperatura de superficie del múltiple MT - Transmisión manual MTV - Válvula de ajuste del múltiple mV or mv - Milivoltios MVLPS - Posición de palanca de válvula manual MVZ - Zona de vacío del múltiple N - Nitrógeno N.C. - Posición normalmente cerrada N.O. - Posición normalmente abierta N/MIL - Código fijado sin solicitud de MIL N/V - Relación entre velocidad del eje de entrada y velocidad del vehículo NDIR - Infrarrojo no dispersor NDS - Interruptor de marcha neutra NGS - Interruptor de marcha neutra (Ford) NGV - Vehículos a gas natural Nm - Newton-metros NOx - Óxidos de nitrógeno NTC - Coeficiente negativo de temperatura NVRAM - Memoria no volátil de aleatorio O2 - Oxígeno O2S-11 - Señal de sensor de oxígeno (Banco 1) O2S-21 - Señal de sensor de oxígeno (Banco 2)
OASIS - Sistema de Información de Servicio Automotor en Línea de Ford Motor Company OBD I - Diagnóstico a bordo, Versión I OBD II - Diagnóstico a bordo, Versión II OBD STAT - Estado del sistema de diagnóstico a bordo OC - Convertidor catalítico de oxidación OCC - Revisión circuito de salida (Ford) OCIL - Lámpara indicadora de cancelación de sobremarcha OCS - Interruptor de cancelación de sobremarcha OCT ADJ - Interruptor de combustible para ajuste de octanos OD - Sobremarcha OD - Diámetro exterior ODM - Monitor de dispositivo de salida ODS - Velocidad del tambor de sobremarcha OE - Equipo original OEM - Fabricante del equipo original OHC - Motor con árbol de levas de cabeza OHV - Válvula de cabeza OL - Circuito abierto ORC - convertidor de oxidación-reducción OS - Sensor de oxígeno OSAC - Orifice Spark Advance Control (Chrysler) OSC - Revisión de estado de salida (Ford) OSM - Monitor de estado de salida OSS - Eje de velocidad de salida OTIS - Sistema de información de viaje OVCV - Válvula de control de ventilación exterior P/B - Servofrenos
P/E - Enriquecimiento de potencia P/N - Número de pieza P/S - Aire a presión (Honda) PA - Air de presión (Honda) PAFS - Sistema de alimentación de aire por pulsos (Chrysler) PAIR - Inyección de aire secundaria pulsada PAS - Sistema antirrobo pasivo PAS - Dirección asistida - Sistema de seguridad automotriz personalizado PC - Control de presión PCB - Circuito impreso PCI - Interfaz de comunicaciones programable PCM - Módulo de control del tren motriz PCS - Solenoide de control de presión PCV - Ventilación positiva del cárter PECV - Válvula de control de enriquecimiento de potencia PF - Sensor de flujo de purga PFE - Sensor de EGR de retroalimentación de presión PFI - Inyección de combustible en puertos PFI - Inyección de combustible en puertos (GM) PGM-FI - Inyección de combustible programada para istrar el combustible (Honda) PID - Lugar de identificación de parámetros PID SUP - Identificación de parámetros soportada PIP - Señal de captación de perfil de encendido PIV - Voltaje inverso máximo PKE - Entrada pasiva sin llave PMD - Controlador montado en bomba
PNP - Position de neutral par POT - Potenciómetro PPM - Partes por minuto PPS - Interruptor de presión con puerto (Ford) PR - Alivio de presión PRC - Control del regulador de presión PRNDL - Interruptor PROM - Memoria programable sólo de lectura PS - Dirección asistida PSA - Conjunto del interruptor de presión PSC - Control de dirección asistida PSI - Libras por pulgada cuadrada PSOM - Módulo de velocímetro-odómetro programable PSOV - Válvula de cierre de purga (Ford) PSP - Presión de dirección asistida PSPS - Interruptor de presión de dirección asistida PTC - Resistencia de coeficiente de temperatura positivo PTO - Toma de potencia (Opción tracción en 4 ruedas) PTOX - Oxidación períodica por retenció PTU - Desbloqueo a marcha media PVA - Avance de vacío con orificio PVS - Interruptor de vacío con orificio PWM - Pulso con modulación PWR GND - Tierra para PCM QDM - Módulo de manejo cuádruple RABS - Sistema trasero de frenos antibloqueo RAM - Memoria de aleatorio RAP - Potencia retenida al interior
RECAL - Ajuste de calibración REDOX - convertidor de reducción-oxidación REF - Referencia RFI - Interferencia de radiofrecuencia RHD - Dirección a la derecha RKE - Entrada con control remoto sin llave RM - Módulo de relé ROM - Memoria sólo de lectura RON - Octanaje RPM - Revoluciones por minuto RRS - Sensor de reluctancia variable RTD - Amortiguación en tiempo real RTN - Circuito de tierra de sensor dedicado RTV - Vulcanización a temperatura ambiente RVP - Presión de vapor Reid RWAL - Antibloqueo de ruedas traseras RWD - Tracción trasera S4WD - Tracción en las cuatro ruedas seleccionable SAE - Grado de viscosidad SA-FV - Separador combustible-vacío SAVM - Modulador de avance de encendido por vacío SAW - Ángulo de encendido SBDS - Sistema de diagnóstico para pabellón de servicio SBEC - Controlador del motor de placa única (reemplazado por PCM) SBS - Solenoide de refuerzo (Ford) SBT - Serial Bus Traveler SC - Motor supercargado
SCAP - Sensor de presión absoluta con capacitancia de silicona (Ford) SCB - Derivación del supercargador SCC - Computadora de control de encendido (Chrysler) S - Protocolo corporativo estándar SDI - Encendido directo de Saab SDM - Módulo de diagnóstico de sensores SDV - Válvula de retardo de encendido SDV - Válvula de desaceleración de encendido SEFI - Inyección de combustible electrónica secuencial SEO - Opción de equipo especial SES - Luz "Service Engine Soon" Servicio del motor a la brevedad (reemplazado por MIL) SFI - Inyección secuencial de combustible SHED - Sistema de determinación evaporativa con alojamiento sellado SHO - Motor de rendimiento super alto SHRT FT - Ajuste de combustible a corto plazo SHRTFT1 - Ajuste de combustible a corto plazo, Banco 1 SIG RTN - Retorno de señal (tierra del sensor) SIL - Lámpara indicadora de cambio de marcha SIPS - Sistema de protección contra impactos laterales SIR - Sujeción inflable suplementaria SIS - Solenoide de regulación para marcha lenta SMEC - Controlador de motor de módulo único (reemplazado por PCM) SMPI - Inyección de combustible secuencial multipuerto (Chrysler) SO2 - Dióxido de azufre SOHC - Monoárbol de levas en cabeza SPD - Velocidad SPFI - Inyección de combustible en un sólo punto (cuerpo del acelerador)
SPI - Interfaz serial para periféricos SPL - Limitador de humo SPOUT - Señal de salida de bujía SPS - Sistema de programación de servicio SRC - Control selectivo de manejo (Selective Ride Control) SRDV - Válvula de retardo de encendido SRI - Indicador recordatorio de servicio SRS - Solenoide de retardo de encendido SRS - Sistema suplementario de sujeción (bolsa de aire) SRT - Prueba de preparación del sistema SS - Sensor de velocidad (Honda) SS1, SS2,etc. - Cambios, solenoide 1, 2, etc. SSI - Encendido de estado sólido (Ford) ST - Herramienta de rastreo STAR - Lectura automática de autoprueba STI - Entrada de autoprueba STI - Entrada de autoprueba (Ford) STO - Salida de autoprueba STO - Salida de autoprueba (Ford) STS - Servicio del sistema del acelerador (lámpara) SUSP - Módulo del sistema de suspensión SVV - Válvula solenoidal de ventilación (Ford) SWB - Base de ruedas baja TA - Temperatura Aire (Honda) TAB - Solenoide de derivación de aire (Thermactor Air By) TAC - Control de accionador del acelerador TAC - Purificador de aire termostático (GM) TACH - Tacómetro
TAD - Desviador de aire (Thermactor Air Diverter) TAP - Presión adaptiva de transmisión TAV - Vacío accionado por temperatura TBI - Inyección en el cuerpo del acelerador TC - Turbocargador TCA - Purificador de aire controlado por termostato TCC - Embrague convertidor de torque TC - Presión del embrague convertidor de torque TCCS - Sistema Toyota controlado por computadora TCIL - Lámpara indicadora de control de transmisión TCM - Módulo de control de transmisión T - Cargador de torque T - Bomba aceleradora compensada por temperatura (Ford) TCS - Interruptor de control de tracción TCS - Interruptor de control de transmisión TCS - Encendido controlada por transmisión (GM) TD - Turbodiesel TDC - Punto muerto superior TDI - Inyección turbo-directa TE - Expansión térmica TFP - Presión del líquido de transmisión TFP - Presión del líquido del acelerador TFT - Temperatura del líquido de transmisión THM - Turbo Hydra-Matic TI - Sistema de encendido transistorizado TIC - Control térmico de encendido (Chrysler) TIV - Válvula de vacío para marcha lenta (Ford)
TK - Accionador del acelerador (Ford) TKS - Solenoide accionador del acelerador TOT - Temperatura del aceite de transmisión TP - Posición del acelerador TP Mode - Modo de posición del acelerador TPCV - Válvula de control del tanque de presión TPI - Tuned Port Injection TPM - Monitor de presión de neumáticos TPP - Potenciómetro de posición de acelerador TPS - Sensor de posición de acelerador TPT - Transductor de posición de acelerador (Chrysler) TR - Sensor de rango de transmisión TRLHP - Válvula de vacío térmica TRS, TRS+1 - Sistema de control de encendido regulado por la transmisión TSB - Boletín de servicio técnico TSP - Posicionador del solenoide del acelerador (Ford) TSS - Sensor de velocidad del eje de transmisión TSS - Sensor del eje de velocidad de la turbina TV - Válvula del acelerador TVS - Interruptor de vacío de temperatura TVV - Válvula de ventilación térmica (Ford) TWC - Triple catalizador TWC + OC - Triple catalizador UART - Receptor-transmisor asíncrono universal UD - Reserva de potencia (Underdrive) UIDI - Up-Integrated Direct Ignition V - Voltios VAC - Vacío
VAF - Medidor de flujo de aire de paletas VAF - Flujo volumétrico de aire VAT - Sensor de temperatura del aire VATS - Sistema antirrobo del vehículo VBAT - Voltaje de la batería del vehículo (sistema) VCC - Solenoide de control de cierre de vacío VCM - Módulo de control del vehículo VCRM - Módulo de relé de control variable VCTS - Válvula sensora de temperatura para control de vacío (Ford) VCV - Válvula de control de vacío (Ford) VDOT - Tubo con orificio de desplazamiento variable VDV - Válvula de retardo de vacío VDV - Válvula diferencial de vacío (Ford) VECI - Calcomanía de información de control de emisiones del vehículo VF - Fluorescente de vacío VIM - Módulo de interfaz del vehículo VIN - Número de identificación del vehículo VIS - Sistema de inducción variable VLCM - Módulo de control de carga variable VMV - Válvula de control de vapor (EVAP) VMV - Válvula moduladora de vacío VNT - Turbocargador de inyector variable VOTM - Modulador del acelerador operado por vacío (Ford) VPWM - Ancho de pulso variable modulado VPWR - Corriente conmutada por la ignición VR - Regulador de voltaje VR/S - Regulador/Solenoide de vacío (Ford)
VRDV - Válvula de retardo de vacío (Ford) VREF - Voltaje de referencia (de PCM) VRESER - Depósito de vacío (Ford) VREST - Limitador de vacío (Ford) VRIS - Sistema de inducción de resonancia variable VRS - Sensor de reluctancia variable VRV - Válvula reguladora de vacío (Ford) VSS - Sensor de velocidad del vehículo VVA - Amplificador venturi de vacío (Ford) VVC - Ahogador de voltaje variable (Ford) VVV - Válvula de ventilación de vacío (Ford) W/B - Base de las ruedas WAC - Relé de aire acondicionado (WOT) WACA - Monitor de relé de aire acondicionado (WOT) WOT - Acelerador totalmente abierto WOTV - Válvula del acelerador totalmente abierta (Ford) WSS - Sensor de velocidad de las ruedas WU OC - Calentamiento de convertidor catalítico de oxidación WU TWC - Calentamiento de convertidor catalítico de tres vías